Trapping of oxygen vacancies in the twin walls of perovskite

Goncalves-Ferreira, Liliana and Redfern, Simon A. T. and Artacho, Emilio and Salje, Ekhard K. H. and Lee, William T. (2010) Trapping of oxygen vacancies in the twin walls of perovskite. Physical Review B, 81 (2). 024109. DOI 10.1103/PhysRevB.81.024109

[img] PDF
Goncalves-Ferreira_et_al._-_2010_-_Trapping_of_oxygen_vacancies_in_the_twin_walls_of_.pdf
Restricted to Registered users only

Download (480kB)
Official URL: http://link.aps.org/doi/10.1103/PhysRevB.81.024109

Abstract

The binding and pairwise interaction of oxygen vacancies in the ferroelastic (100) twin walls of the orthorhombic phase of CaTiO3 perovskite (Pbnm) have been investigated by numerical simulations using empirical force fields. An oxygen vacancy finds it energetically favorable to reside inside a twin wall, particularly when bridging two titanium ions located in the twin-wall plane. In such case, the binding energy of the vacancy to the wall is 0.7±0.1 eV, the error bar reflecting variability within two different force fields. A different disposition of the vacancy in the wall sees its binding energy reduced by a factor of 2. This implies that depending on the relative time scales for twin-wall motion and for oxygen-vacancy diffusion, anelastic motion of twin walls can display two different energy dissipation mechanisms associated to these point defects. The strongest interactions among oxygen vacancies in a twin wall are due to short-range repulsion so that no defect clusters were found. The vacancy-wall binding energy is found to increase substantially with pressure.

Item Type: Article
Uncontrolled Keywords: 09AREP; IA60;
Subjects: 03 - Mineral Sciences
Divisions: 03 - Mineral Sciences
Journal or Publication Title: Physical Review B
Volume: 81
Page Range: 024109
Identification Number: 10.1103/PhysRevB.81.024109
Depositing User: Sarah Humbert
Date Deposited: 19 Mar 2010 17:20
Last Modified: 23 Jul 2013 09:56
URI: http://eprints.esc.cam.ac.uk/id/eprint/1346

Actions (login required)

View Item View Item

About cookies