A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection

Lovell, B. (2010) A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. Journal of the Geological Society, 167 (4). pp. 637-648. ISSN 0016-7649 DOI https://doi.org/10.1144/0016-76492009-127

[img] PDF
Restricted to Registered users only

Download (654kB)
Official URL: http://dx.doi.org/10.1144/0016-76492009-127


An explanation for high-frequency cycles of sea level in non-glacial times has remained elusive, despite more than two centuries of research since Lavoisier's seminal observations were published in 1789. In the development of seismic stratigraphy in the 1970s, putatively global high-frequency changes in relative sea level (Vail third-order cycles) were attributed to an unknown eustatic mechanism, prompting a search for Mesozoic ice ages. Over the last decade, a regional mechanism of sea-level control has been developed from studies of the sedimentary record in high-quality oil-industry data. These geological studies have supported the geophysical prediction that significant regional control of sea level is exercised by mantle-induced vertical motions of the Earth's surface. These vertical motions can occur over time intervals from several tens of million years to less than a million years, with amplitudes of tens of metres or more even at the shorter intervals. The vertical motions are not confined to regions with major hotspots. There are two related controls of surface vertical motion: evolution of mantle-convection cells, and pulsing flow within each cell. The effects are evident in the sedimentary record of North Atlantic basins. Mantle convection provides an alternative, regional, mechanism to eustatic control for explaining medium-frequency to high-frequency sea-level cycles.

Item Type: Article
Uncontrolled Keywords: 2010AREP; IA61;
Subjects: 01 - Climate Change and Earth-Ocean Atmosphere Systems
Divisions: 01 - Climate Change and Earth-Ocean Atmosphere Systems
Journal or Publication Title: Journal of the Geological Society
Volume: 167
Page Range: pp. 637-648
Identification Number: https://doi.org/10.1144/0016-76492009-127
Depositing User: Sarah Humbert
Date Deposited: 10 Aug 2010 10:49
Last Modified: 23 Jul 2013 10:00
URI: http://eprints.esc.cam.ac.uk/id/eprint/1904

Actions (login required)

View Item View Item

About cookies