A new method to quantify the real supply of mafic components to a hybrid andesite

Humphreys, M. C. S. and Edmonds, M. and Plail, M. and Barclay, J. and Parkes, D. and Christopher, T. (2013) A new method to quantify the real supply of mafic components to a hybrid andesite. Contributions to Mineralogy and Petrology, 165 (1). pp. 191-215. DOI 10.1007/s00410-012-0805-x

[img] PDF
Humphreys_et_al._-_2013_-_A_new_method_to_quantify_the_real_supply_of_mafic.pdf
Restricted to Registered users only

Download (1MB)
[img]
Preview
Image (JPEG)
410_2012_805_Fig1_HTML.jpg

Download (204kB) | Preview
Official URL: http://link.springer.com/article/10.1007/s00410-01...

Abstract

The eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplying heat and volatiles to the andesite resident in the magma chamber. As well as producing macroscopic mafic inclusions, the magma mixing process involves incorporation of phenocrysts from the andesite into the mafic magma. These inherited phenocrysts show clear disequilibrium textures (e.g. sieved plagioclase rims and thermal breakdown rims on hornblende). Approximately 25 % of all phenocrysts in the andesite show these textures, indicating very extensive mass transfer between the two magma types. Fragments of mafic inclusions down to sub-mm scale are found in the andesite, together with mafic crystal clusters, which are commonly found adhered to the rims of phenocrysts with disequilibrium features. Mineral chemistry also points to the transfer of microlites or microphenocrysts, initially formed in the mafic inclusions, into the andesite. This combined evidence suggests that some of the mafic inclusions disaggregate during mingling and/or ascent, possibly due to shearing, and raises the question: What proportion of the andesite ‘groundmass’ actually originated in the mafic inclusions, and thus, what is the true amount of mafic magma in the magmatic system? We present a new method for quantifying the relative proportions of groundmass plagioclase derived from mafic and andesitic magma, based on analysis of back-scattered electron images of the groundmass. Preliminary results indicate that approximately 16 % of all groundmass plagioclase belongs genetically to the mafic inclusions. Together with the crystal clusters, disequilibrium phenocryst textures and mm-scale inclusions, there is a ‘cryptic’ mafic component in the andesite of approximately 6 % by volume. This is significant compared with the proportion of macroscopic mafic inclusions (typically ~ 1–5 %). The new method has the potential to allow tracking of the mafic fraction through time and thus to yield further insights into magma hybridisation processes.

Item Type: Article
Uncontrolled Keywords: 2012AREP; IA65;
Subjects: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
06 - Part-III Projects
Divisions: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
06 - Part-III Projects
Journal or Publication Title: Contributions to Mineralogy and Petrology
Volume: 165
Page Range: pp. 191-215
Identification Number: 10.1007/s00410-012-0805-x
Depositing User: Sarah Humbert
Date Deposited: 26 Jan 2013 10:22
Last Modified: 17 Feb 2017 12:19
URI: http://eprints.esc.cam.ac.uk/id/eprint/2666

Actions (login required)

View Item View Item

About cookies