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Figure 12. (a) Receiver functions for station AMT are plotted with increasing epicentral distance. Backazimuth values are also shown to the right of the
plot. Receiver functions in the grey shaded zone are stacked and inverted jointly with group velocity dispersion data. (b) Fitting of synthetic dispersion curve
(red line) with observed group velocities from ambient noise (black circles) and earthquake tomography (red circles) with error bars (black vertical bars). (c)
Fitting of stacked receiver function (blue line) with synthetic receiver function (red line) and ±1σ error bounds. (d) Synthetic receiver functions (dashed lines)
corresponding to the Moho depth variation by ±2 km (black dashed line in panel e). (e) Final shear velocity model (red line) corresponding to the half-space
initial model with Vs = 4.5 km s−1 (blue dashed line). M denotes the Moho discontinuity and grey shaded region denotes the thickness of the basal layer.

some realistic velocity is enough to make iterative process in joint
inversion converge to the true solution, where dispersion curves
act as a smoothness constraint by averaging the shear velocities at
different depth ranges. To study the influence of the initial model
in the inversion, we carried out joint inversion for station AMT,
using different initial models (Fig. 13). We performed inversion
with ak135 (Kennett et al. 1995, blue line) and iasp91 (Kennett &
Engdahl 1991, green line) velocity model, keeping Moho fixed at
40 km with layer thicknesses 2 km down to a depth of 40 km and
5 km below it to a depth of 200 km. We also use the similar initial
model (magenta line) used by Julià et al. (2009) that consists of a
40-km-thick crust with linear increase in S-wave velocity from 3.4
to 4.0 km s−1 overlying a flattened PREM model (Dziewonski &
Anderson 1981) down to a depth of 200 km. Inversion is repeated
20 times to have final models. These models are compared with
our final models (red line). All the models fit the dispersion data
(Fig. 13b) and receiver function (Fig. 13c) very well and converge
to the similar final model (Fig. 13a).

The resulting velocity models are discussed with reference to con-
tinental crust of average thickness ∼40 km (Christensen 1996; Rud-
nick & Gao 2003) divided into upper, middle and lower crust cor-
responding to depth interval of 0–11, 11–23 and 23–40 km with the
corresponding shear velocity of 2.8–3.5, 3.5–3.8, 3.8–4.1 km s−1,
respectively. Usually the shear velocity (Vs) ∼ 4.0 km s−1 and above
is considered as the representative for the basal layer and the Moho
is defined by a jump in seismic wave velocity to values greater than

7.6–8.0 km s−1 for P wave and 4.3–4.6 km s−1 for S wave. For a va-
riety of mafic lower crustal rocks, the shear wave velocity increases
to 3.8 km s−1 for felsic granulite, to 3.9 km s−1 for mafic granulite,
to >4.1 km s−1 for garnet granulite rocks. Using this methodology,
thickness of the upper, middle, lower, basal layer and the average Vs

of the crust are calculated. The similar methodology is applied for
all the stations of the Dharwar Craton.

7 R E S U LT S

In Fig. 14, we present the shear velocity results for representative
stations in different tectonic blocks namely: EDC, CG, WDC, West-
ern Ghat, SGT and Eastern Ghat. Each plot of Figs 14(a) and (b)
represent the synthetic group velocity dispersion curve and syn-
thetic receiver function (red lines), respectively, corresponding to
the shear velocity model in Fig. 14(c), which fit the observed group
velocities (black and red circles) and observed receiver function
(blue line) very well. Due to poor quality and severe complexity
in receiver functions, we are unable to invert receiver functions for
stations PDC, TDT and VBD. These stations are not included in
our analysis. The velocity models for all other stations are pre-
sented in Fig. S2. Important results obtained from those models are
summarized in Table S1.

To access the reliability of the velocity-depth image (down to
55 km depth) obtained in this study, 1-D shear velocity inversion
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Figure 13. Effect of different initial models on inversion results. (a) Initial (dashed lines) and final (thick lines) models corresponding to the Vs = 4.5 km s−1

(present study), ak135 model (Kennett et al. 1995), iasp91 model (Kennett & Engdahl 1991) and Julià et al. (2009) model. (b) Fitting of dispersion curves
(coloured lines) and observed group velocities (black and red circles) with error bars corresponding to the models in (a). (c) Fitting synthetic receiver functions
(coloured lines) with error bounds (grey lines) corresponding to the models in (a).

results are compared with those from previous studies obtained
using joint inversion of receiver function and surface wave velocities
from earthquake waveforms (Rai et al. 2003; Julià et al. 2009) and
receiver function inversion results (Sarkar et al. 2003; Fig. 15).
Comparison shows similar crustal structure for most of the stations.
Differences occur in the upper crust velocity image at few stations
(like DHR, HSN) which may be due to the inclusion of group
velocity dispersion data at lower periods providing better control at
shallow depth compared to earlier studies.

Shear velocity maps at different depth ranges are presented in
Fig. 16. These maps are created by interpolating the 1-D shear
velocity model in 10 × 10 km grid obtained from each of the stations
of the Dharwar Craton and then average them in that selected depth
ranges. Map shows the existence of upper crust down to a depth of
4 km. In 4–10 km depth range, few stations of greenstone belt show
velocity corresponding to lower crustal velocity (Vs > 3.8 km s−1).
The middle crust (Vs ∼ 3.5–3.8 km s−1) is mapped to ∼10–20 km
depth ranges. In 20–34 km depth ranges most part of the craton
enters in the lower crust. At 34–40 km depth, Vs ≥ 4.0 km s−1 is
observed for most part of the WDC, SGT and Western Ghat which
continues to 40–50 km depth ranges. Since, Moho depth in the
EDC is ∼35 km, it reaches the mantle at 34–40 km depth ranges.
Considering that the Moho beneath the EDC is at ∼35 km while
beneath the WDC and SGT it is ∼38–52 km, mafic lower most
crust (Vs ≥ 4.0 km s−1) is inferred to be very thin (<4 km) beneath
the EDC as compared to a thicker (∼20 km) column beneath the
WDC and SGT. In 40–50 km depth ranges, entire Dharwar Craton
enters in the mantle, except greenstone belt where thickest Moho
depth is observed (∼52 km).

7.1 Comparison with global Precambrian velocity models

We compare the velocity character of the Archean and Proterozoic
crust in the Dharwar Craton with those derived for global average
(Fig. 17). The shear velocity model representing the global Precam-

brian crust (Fig. 18) is computed from the compilation of global
P-wave velocity model (Christensen & Mooney 1995) using the
average Vp/Vs ratio for the crust computed using crustal petrol-
ogy model (Christensen 1996). Based on the geology, stations are
grouped and their average velocity–depth profile is created along
with the deviation. Stations in EDC, CG and CB have Vs ∼ 3.5–
3.7 km s−1 in the upper 10 km, followed by 3.8 km s−1 in the depth
of 10–32 km. Moho is mapped at ∼36 km. The WDC has similar
velocity like the EDC down to a depth of ∼24 km. Beyond this
depth the velocity increases and reaches ∼4.0 km s−1 at ∼32 km.
Average Moho depth in the WDC is ∼44 km with about 12 km of
mafic cumulate (Vp ∼ 7.0 km s−1) above the Moho. In SGT, we ob-
serve larger scatter in velocity to a depth of 5 km beyond which it is
similar to those observed beneath the WDC. Similar observations
are made for Eastern and Western Ghat stations. It may be noted
that the EDC has velocity character similar to the global average
while for other terrains; shear velocity in lower crust is significantly
higher compared to the global velocity model.

7.2 Moho depth and average crust velocity

The data obtained from joint inversion modelling are interpolated
over a 10 × 10 km grid to generate Moho depth variation map of the
region. We also plot the surface topography of the region (Fig. 19a).
The Moho depth map (Fig. 19b) shows a clear division of the WDC,
in the north WDC and south WDC. Within the WDC, we observe
variations in Moho depth: 42–46 km in north, 48–52 km in south and
thinned Moho (∼38–42 km) in central part. This is possibly the first
clear distinction observed between the north and south WDC which
are known to be of distinct Archean ages and lithology. The SGT can
be separated in two blocks; West SGT (Moho depth ∼49 km) and
East SGT (Moho depth ∼41 km). For other tectonic blocks Moho
depth varies from 34–38 km in the EDC, 42–46 km in Western Ghat,
∼38–46 km in Eastern Ghat, 36 km in CB and 40 km in CG. The
EDC is characterized by an elevation of 400–800 m (Fig. 19a) and
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Figure 14. Joint inversion results. (a) Fitting of dispersion curve (red line) with observed group velocities (black and red circles) with error bars. (b) Fitting of
stacked receiver function (blue line) with synthetic receiver function (red line) and error bounds (grey lines). (c) Shear velocity model (station name plotted at
the bottom left-hand corner of the plot). M denotes the Moho discontinuity and grey shaded region denotes the thickness of the basal layer (Vs ≥ 4.0 km s−1).

Moho depth of 34–38 km. Despite having similar topography as
of the EDC, the WDC shows large variation in the Moho depth:
42–46 km in north to 48–52 km in its south. Using normal density
contrast across Moho, this should lead to an elevation of more
than 3 km in the southern part of the WDC. However, in view of
the nearly flat topography (∼600 m) in this region, we speculate

that this region is compensated by high-density (and high-velocity)
material in the lowermost crust. The granulite terrain (SGT) and
Eastern and Western Ghats have Moho depth of ∼44 km (average).
Corresponding to the Moho depth discussed earlier, we compute
the average shear velocity of the crust and present in Fig. 19(c). The
average Vs for the EDC is mostly 3.70–3.78 km s−1, significantly
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Figure 15. Comparison of shear velocity models between this study (red line) with other earlier studies (e.g. Rai et al. 2003; Sarkar et al. 2003; Julià et al.
2009).

lower (and felsic-intermediate) as compared to the WDC (mostly
3.80–3.95 km s−1) that is more mafic in nature. Like the WDC,
stations that belong to the SGT, Eastern Ghat and Western Ghat
show high average crustal Vs (∼3.86 km s−1).

7.3 Nature of the lower continental crust

From the resultant shear velocity model, we compute the thickness
and velocity of the lower crust (Figs 20a and b). Thickness of the
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Figure 16. Shear velocity variation map at different depth ranges. Stations (black triangle) and tectonic boundaries (black solid line) are projected on each
plot.

lower crust beneath the EDC is on average around ∼12 km, except
in the central part where it is ∼18 km (PKD and KDR station;
Table S1). Stations within and in the neighbourhood of CG have
thicker lower crust (∼20 km) compared to the other EDC stations.
Thickness of the lower crust beneath the WDC, SGT and Eastern and
Western Ghat varies between 20 and 30 km (Fig. 20a). The average
lower crust velocity is ∼3.95 km s−1 except in the greenstone belt
and the granulite terrain, where it is in the range of ∼4–4.1 km s−1

(Fig. 20b).

7.4 The lowermost crust

To study the variable character of the lowermost crust and the nature
of crust–mantle interaction, we map the layer with Vs ≥ 4.0 km s−1

(basal layer). Thickness of the basal layer is plotted in Fig. 20(c).
Thickness of the basal layer is indicative of the sharpness of Moho.
In the lowermost crust, the EDC is quite distinct from the other
tectonic blocks. The basal layer thickness is on average ∼5 km
in the EDC, 10–16 km beneath most part of the WDC except the
mid-Archean greenstone belt, where it is ∼22–27 km. Thickness of
the basal layer in western SGT is more (∼20 km) compared to the
eastern part (∼7 km). The study suggests that Moho is relatively a
thin transition beneath the EDC compared to the WDC. Also, we
observe similar segmentation in SGT between the east and west.
Considering that there is little difference in both the topography and
the Bouguer gravity field in the study region, we speculate that the
lowermost crust has high-density mafic/ultramafic composition in
the WDC and SGT.

8 D I S C U S S I O N S A N D C O N C LU S I O N S

We compute cross-correlation of 18 months long time-series of
ambient seismic noise recorded on 35 broad-band seismographs
operated during 2009 February to 2010 August over the Dharwar

Craton and adjoining granulite terrain to produce the interstation
Rayleigh-wave group velocity (5–28 s periods) measurements. The
number of paths varies from 308 to 488 depending on the pe-
riod of group velocity. These measurements are transformed into
group velocity maps. This is supplemented with the longer period
group velocity data (40–70 s) from Acton et al. (2010) and then
jointly inverted with receiver function data to produce 3-D shear
velocity depth image of the study region. Significant findings of the
shear wave velocity image reconstructed from joint inversion results
of the dispersion data and receiver function modelling include the
following:

(1) Short period (5–10 s) Rayleigh-wave tomographic images
show an excellent correlation with the surface geology where
Archean and Proterozoic basins have lower group velocity (3.15–
3.25 km s−1) compared to exposed mid-lower crust terrains with
higher group velocity (3.25–3.40 km s−1). Also most of the schist
belts are characterized by higher group velocity (3.3–3.4 km s−1).

(2) The Dharwar Craton, despite being a predominantly Archean
terrain, has significant lateral variability in Moho depth. Some of
the features include: a nearly flat Moho at a depth of 34–38 km be-
neath the EDC, and Moho at a depth of 42–54 km in the WDC. The
deepest Moho is observed beneath the greenstone belt in southern
part of the WDC where vestiges of early-mid Archean (∼3.36 Ma)
enclaves are found. Moho depths for other tectonics blocks vary
from 40 to 50 km in SGT, 42 to 46 in Western Ghat, 38 to 46 km
in Eastern Ghat, 36 km in CB and 40 km in CG. The Moho depth
changes by over 10 km are unusual in continents (Jackson et al.
2008). It is important to understand the geological process respon-
sible for preservation of such a Moho configuration. Meissner &
Kusznier (1987) based on rheological studies suggest the existence
of high strength layer in the uppermost mantle. A number of re-
searchers have examined the longevity of such Moho topography
(Housman et al. 1981; Meissner & Kuszir 1987; Kusznir & Mathew
1988). They suggest lower crustal flow can remove all but long- and
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Figure 17. Comparison of the shear velocity character of the Archean and Proterozoic crust in the Dharwar Craton with those derived for global average (black
circles) with error bar. Red circles are the average shear velocity model calculated from the shear velocity models (grey curves) with error bar, obtained from
the tectonic blocks (bottom left corner) at every 2 km. Black dashed lines are marked at 3.5 (marker for upper-middle crust), 3.75 (average of 3.5 and 4.0) and
4.0 km s−1 (marker for basal layer). Blue dashed line is marked at 4.3 km s−1 to identify Moho.
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Figure 18. The shear velocity model representing the global Precambrian crust computed from the compilation of global P-wave velocity model (Christensen
& Mooney 1995) and using the average Vp/Vs ratio computed from crustal petrology model (Christensen 1996).

short-wavelength Moho topography and hence possibly some
of the Precambrian Moho topographies may survive (McKenzie
et al. 2000).

(3) Lower crust beneath the EDC is thinner as compared to
thicker one beneath the WDC, Eastern and Western Ghat and SGT
where it varies from ∼20 to 30 km. Stations situated on and close to
the K-rich mantle-derived CG also have thick lower crust (∼20 km).
We observe a thin mafic layer (<5 km) above Moho beneath the
EDC compared to a thick layer (∼10–27 km) beneath the southern
part of the WDC. Data from the EDC are consistent with the stud-
ies over most of the late Archean cratons of America, Africa and
Australia (e.g. Durrheim & Mooney 1994; Chevrot & van der Hilst
2000; Niu & James 2002; Reading et al. 2007). Our observation of
significant mafic cumulate beneath the mid-Archean WDC is at odd
with the models of crustal evolution (Nelson 1991). Underplating
of magma is commonly associated with the formation of a resid-
ual mafic layer in lower crust characterized by high velocity and
could explain the evolution of cratons like Karelia (Peltonen et al.
2006), North China west block (Zhang et al. 2012). We argue that
under higher thermal gradient during Archean, tectonically buried
oceanic crust in presence of water would have been converted to
highly mafic crust that would have been strong and too buoyant
to sink into the mantle (Bjornereud & Austrheim 2004). We spec-
ulate presence of partially eclogitized rocks in the lower crust of
the WDC.

(4) The average crustal velocity in most part of the EDC is
∼3.75 km s−1, suggestive of its intermediate composition as also
hypothesized based on geochemical measurements (Chadwick et al.
2000) compared to 3.80–3.95 km s−1 in the WDC. It, however, re-
mains an open issue when and how the EDC crust turned to be
intermediate in composition from a more primitive basalt compo-
sition. This differentiation has been explained as due to lower crust
foundering (Kay & Kay 1991) or through a process of crustal relam-
ination (Hacker et al. 2011) as a possible consequence of subduction
of the WDC beneath the EDC. The process of delamination of the
EDC lower crust finds support from presence of eclogites in the
xenoliths at the margin of WDC/EDC. We speculate that the delam-
ination process could have been responsible for a nearly flat Moho
and felsic-intermediate composition of the crust beneath the EDC.
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Figure 19. (a) Topography and (b) Moho depth variation map of the study
region. Contours are plotted at every 5 km by dashed lines. (c) Average shear
velocity variation map. Other details are same as in Fig. 16.
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Figure 20. (a) Thickness of the lower crust, (b) average shear velocity of
the lower crust and (c) thickness of the basal layer of the crust in the south
Indian shield. Other details are same as in Fig. 16.
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sion of this article:
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average shear wave velocity (Vs), thickness of lower crust and basal
layer (Vs ≥ 4.0 km s−1) used in the analysis.
Figure S1. Checkerboard recoveries for group velocity at different
periods (10, 15, 20 and 24 s). Anomalies are plotted with respect to
average group velocity (bottom left corner) at that period.
Figure S2. Shear velocity-depth model for all the broad-band seis-
mic stations in different tectonic regions of the study region. Station
name is mentioned in bottom-left corner of each plot. M denotes
the Moho discontinuity and gray shaded region denote the thickness
of the basal layer (Vs ≥ 4.0 km s−1) (http://gji.oxfordjournals.org/
lookup/suppl/doi:10.1093/gji/ggu075/-/DC1)
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