Cassidy, Michael and Edmonds, Marie and Watt, Sebastian F. L. and Palmer, Martin R. and Gernon, Thomas M. (2015) Origin of Basalts by Hybridization in Andesite-dominated Arcs. Journal of Petrology, 56 (2). pp. 325-346. ISSN Print ISSN 0022-3530 - Online ISSN 1460-2415 DOI https://doi.org/10.1093/petrology/egv002
![]() |
Text
Cassidy et al. - 2015 - Origin of Basalts by Hybridization in Andesite-dom.pdf - Published Version Restricted to Registered users only Download (3MB) |
|
|
Text
Supplementary_figure1.pdf - Supplemental Material Download (781kB) | Preview |
|
|
Text
Supplementary_figure_2.pdf - Supplemental Material Download (366kB) | Preview |
|
![]() |
Text
Supplementary_Tables_1_2.xls - Supplemental Material Download (29kB) |
|
![]() |
Text
Supplementary_mineral_data_Table_3.xls - Supplemental Material Download (194kB) |
Abstract
Mafic magmas are common in subduction zone settings, yet their high density restricts their ascent to the surface. Once stalled in the crust, these magmas may differentiate, and assimilate crust and other melts and crystal mushes to produce hybridized intermediate magmas. The Soufrière Hills Volcano on Montserrat is a ‘type locality’ for such hybridization processes and yet, just 3 km south of the crater, voluminous basalts have erupted from the South Soufrière Hills volcano within the same time period as the Soufrière Hills Volcano was erupting hybrid andesites (131–128 ka). Basaltic South Soufrière Hills magmas have 48–53 wt % SiO2 and 4–6 wt % MgO. They were hot (970–1160°C), volatile-rich (melt inclusions contain up to 6·2 wt % H2O) and were stored at 8–13 km depth prior to eruption (based on olivine- and pyroxene-hosted melt inclusion volatile geochemistry). Melt inclusions do not preserve basaltic liquids: they are andesitic to rhyolitic in composition, related to one another by a line of descent controlled by simple closed-system fractionation. Whole-rock compositions, however, are best described by a hybridization model involving ‘back-mixing’ of andesitic to rhyolitic melts with mafic crystal phases such as magnetite, olivine, orthopyroxene and clinopyroxene. Phenocryst zoning illustrates repeated mixing events between evolved melts and mafic phenocrysts; this feature, when coupled with the heterogeneity of crystal compositions, strongly suggests that although the bulk compositions are basaltic (containing Fo80 olivine), they were assembled from disparate ingredients, probably derived from mafic crystal mushes and more evolved melt lenses of variable composition. The mixing events occur days to weeks prior to eruption. We propose that the South Soufrière Hills basaltic magmas, with their higher bulk density relative to andesites from neighbouring volcanoes, ultimately may have been eruptible owing to both the transtensional tectonics imposed by offshore grabens (related to oblique subduction in the Lesser Antilles arc) and surface unloading caused by large-scale edifice collapse. Our observations support the idea that compositional changes in arcs might reflect not only changes in source compositions, but also effects caused by variations in crustal strain and tectonics.
Item Type: | Article |
---|---|
Additional Information: | Accepted January 16, 2015 ©The Authors |
Uncontrolled Keywords: | 2015AREP; IA69; |
Subjects: | 05 - Petrology - Igneous, Metamorphic and Volcanic Studies |
Divisions: | 05 - Petrology - Igneous, Metamorphic and Volcanic Studies |
Journal or Publication Title: | Journal of Petrology |
Volume: | 56 |
Page Range: | pp. 325-346 |
Identification Number: | https://doi.org/10.1093/petrology/egv002 |
Depositing User: | Sarah Humbert |
Date Deposited: | 22 May 2015 18:04 |
Last Modified: | 29 May 2015 15:40 |
URI: | http://eprints.esc.cam.ac.uk/id/eprint/3315 |
Actions (login required)
![]() |
View Item |