Late Holocene uplift of Rhodes, Greece: evidence for a large tsunamigenic earthquake and the implications for the tectonics of the eastern Hellenic Trench System

Andy Howell, James Jackson, Philip England, Thomas Higham and Costas Synolakis

1 COMET, Department of Earth Sciences, University of Cambridge, Bullard Labs, Madingley Road, Cambridge CB3 0EZ, United Kingdom.
E-mail: arh79@cam.ac.uk
2 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
3 Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford OX1 3QY, United Kingdom
4 Department of Environmental Engineering, Technical University of Crete, Chania, Greece
5 Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-2531, USA

Accepted 2015 July 21. Received 2015 May 13; in original form 2014 December 8

SUMMARY

Several large earthquakes in the Hellenic subduction zone have been documented in historical records from around the eastern Mediterranean, but the relative seismic quiescence of the region over the period of instrumental observation means that the exact locations of these earthquakes and their tectonic significance are not known. We present AMS radiocarbon dates from uplifted late Holocene palaeoshorelines from the island of Rhodes, showing that uplift is most consistent with a single large ($M_W \geq 7.7$) reverse-faulting earthquake between about 2000 BC and 200 BC. Analysis of the uplift treating the earthquake as a dislocation in an elastic half-space shows a predominantly reverse-faulting event with a slip vector oblique to the direction of convergence between Rhodes and Nubia. We suggest that the fault responsible for the uplift dips at an angle of 30–60° above the more gently dipping oblique subduction interface. The highly oblique convergence across the eastern Hellenic plate boundary zone appears to be partitioned into reverse slip on faults that strike parallel to the boundary and strike-parallel or oblique slip on the subduction interface. Hydrodynamical simulation of tsunami propagation from a range of tectonically plausible sources suggests that earthquakes on the fault uplifting Rhodes represent a significant tsunami hazard for Rhodes and SW Turkey, and also possibly for Cyprus and the Nile Delta.

Key words: Tsunamis; Subduction zone processes; Continental margins: convergent; Tectonics and landscape evolution.

1 INTRODUCTION

Historical records for cities across the eastern Mediterranean document widespread and catastrophic earthquake and tsunami damage on several occasions during the past 2000 yr, most notably in AD 365 and AD 1303 (Guidoboni & Comastri 1997; Shaw et al. 2008; Ambraseys 2009; Ambraseys & Synolakis 2010; Stiros 2010). Alexandria and the rest of the Nile Delta were flooded extensively by these two tsunamis, which are suggested by analyses of damage distributions to have been caused by earthquakes in the Hellenic subduction zone (Ambraseys 2009).

Paleoshorelines in SW Crete record up to 9 m of late-Holocene uplift, consistent with a single earthquake in AD 365 (Pirazzoli et al. 1996; Shaw et al. 2008; Stiros 2010). Shaw et al. (2008) show that the best-fitting earthquake source for this event is a reverse fault outcropping at a prominent bathymetric escarpment known as the Hellenic Trench. It has been suggested that other deep linear features within the Hellenic plate boundary zone, such as the Pliny and Strabo Trenches (Fig. 1; Emery et al. 1966), may also be the surface projections of faults (e.g. McKenzie 1978; Mascele et al. 1986; Huguen et al. 2001; Özbakır et al. 2013; Gallen et al. 2014). It is therefore important for the assessment of earthquake and tsunami hazard in the eastern Mediterranean to determine whether these features represent seismically active faults and, if so, what magnitude of earthquakes they are capable of generating.

This study focuses on a set of uplifted late Holocene shorelines on Rhodes, previously attributed to differential motions between several small crustal blocks (Pirazzoli et al. 1989), or alternatively to one large-magnitude earthquake on an offshore fault (Kontogianni et al. 2002). We constrain the timing of uplift using radiocarbon dating and refine the uplift distribution suggested by Kontogianni et al. (2002) to allow for possible later
subsidence due to normal faulting in NW Rhodes. We examine the constraints on the strike, dip and slip vector of a fault that could be responsible for the observed uplift, which also allows us to consider the kinematics of the oblique convergence between Rhodes and the eastern Mediterranean seafloor (part of the Nubian plate).

2 TECTONIC SETTING OF RHODES

In the Hellenic plate boundary zone, oceanic Nubian lithosphere is subducted beneath Eurasian continental lithosphere, which extends at about 30 mm yr$^{-1}$ (Nocquet 2012) so that the motion of the Aegean relative to Nubia is subperpendicular to the strike of the subduction zone west of 24°E, but becomes increasingly oblique towards the eastern end of the zone, at Rhodes (Chaumillon & Mascle 1997; Fig. 1). The presence of N–S normal-fault scarps across Crete and the Peloponnese and the strikes of faults offshore from Crete (e.g. Huchon et al. 1982; Armijo et al. 1992; Caputo et al. 2010) suggest arc-parallel extension in the overriding Aegean lithosphere, a suggestion that is supported by data from GPS and earthquake slip vectors (e.g. Floyd et al. 2010; Reilinger et al. 2010; Shaw & Jackson 2010; Nocquet 2012).

Where the rate of convergence is fastest (close to Crete), it appears to be at least 80 per cent aseismic (e.g. Jackson & McKenzie 1988; Shaw & Jackson 2010; Vernant et al. 2014). Shaw et al. (2008) showed that the predominantly aseismic subduction is consistent with the occurrence of rare great earthquakes at the plate boundary if the fault which ruptured in AD 365 is not the subduction interface, but a reverse fault within the overriding crust. This conclusion is consistent with other interpretations of the steep bathymetric escarpments of the Hellenic Trench System as the surface projections of faults (e.g. Le Pichon et al. 1979; Chaumillon & Mascle 1997; Huguen et al. 2001; Özbaş et al. 2013; Gallen et al. 2014).

Rhodes lies beyond the eastern termination of the steep, NE-trending bathymetric escarpments known as the Pliny and Strabo Trenches. The SE margin of Rhodes is bounded by a steep bathymetric escarpment trending 025° (Kontogianni et al. 2002; Becker et al. 2009), with seismic reflection evidence for NW-dipping reverse faults between Rhodes and the Rhodes Basin (Woodside et al. 2000; Hall et al. 2009). Further to the SE a series of bathymetric highs, the Anaximander Mountains, probably form by active reverse faulting (Aksu et al. 2009, 2014). Reflection seismic data show numerous small folds and faults on the eastern side of the Rhodes Basin and in the Anaximander Mountains (ten Veen et al. 2004; Aksu et al. 2009; Hall et al. 2009).

3 OBSERVATIONS OF UPLIFT RELATIVE TO SEA LEVEL

3.1 Mode of uplift

Uplifted palaeoshorelines in the form of prominent notches are visible in limestone cliffs along much of the SE coast of Rhodes (Figs 2a–b and 3), and radiocarbon dating of marine fauna shows them to be late Holocene in age (Pirazzoli et al. 1989; Section 3.3,
Figure 2. Geomorphological features associated with late Holocene and Quaternary uplift of Rhodes. Panels (a) and (b) show uplifted notches on the E coast at Traganou (36.31° N) and Tzambika (36.22° N), respectively. Panels (c) and (d) show Quaternary marine terraces at Lindos (36.10° N, view W) and Kamiros (36.33° N, NW coast, view W). Terrace levels are marked by coloured triangles.

The notches reach a maximum of 3.8 m above the present-day mean sea level (MSL) at Ladikou (36.32° N, 28.21° E) and approach zero elevation SW of Lindos (36.09° N, 28.09° E; Fig. 3b). Quaternary marine terraces (Figs 2c and d) exist around the E and NW coasts of the island, at heights of up to 200 m above MSL adjacent to the notched Holocene palaeoshorelines (Gauthier 1979; Kontogianni et al. 2002). In addition, there are terraces at 10–20 m elevation in the very S of Rhodes, where
Holocene uplift is small (Gauthier 1979; Titschack et al. 2008). The co-location of the uplifted palaeoshorelines and the marine terraces suggests that uplift of Rhodes is tectonic in origin, and has continued through the Quaternary.

The late-Quaternary uplift of Rhodes could plausibly be caused by one of three processes: (1) infrequent large earthquakes (as suggested for Crete by Shaw et al. 2008); (2) frequent small earthquakes (Pirazzoli et al. 1989; Caputo et al. 2010); and (3) continuous gradual uplift, possibly related to sedimentary underplating.

At all of the localities where notches are observed, there is a notch at the height indicated in Fig. 3(b) and also a notch or algal encrustation at the present-day MSL; but at some localities (such as Traganou, 36.31°N, 28.19°E; Fig. 2a), smaller notches are observed between these two heights. Their presence was used by Pirazzoli et al. (1989) to infer differential uplift and subsidence of crustal blocks over multiple earthquakes, but similar multiple notches that do not represent multiple earthquakes are observed on uplifted coastlines throughout the eastern Mediterranean. In the Gulf of Corinth, the ages of these lower notches do not match the times of historical earthquakes, and notch formation has been attributed to climatic processes (Cooper et al. 2007) or earthquake clustering (Boulton & Stewart 2015). On Crete, the uplift in AD 365 (up to 9 m; Shaw et al. 2008) is much greater than the spacing between the lower notches, so their origin there is probably unrelated to coseismic uplift.

On Rhodes itself, the lack of continuity along strike of these lower notches suggests that they may have a local origin, reflecting variable conditions of lithology or chemical and biological dissolution. Furthermore, neither our radiocarbon dates (Section 3.3) nor those of Pirazzoli et al. (1989) show any correlation between sample age and height, as might be expected for gradual uplift. The samples that yield evidence of uplift in the interval 4000–2000 BP cover the full elevation range of the uplifted Holocene shorelines (Table 1), suggesting a single uplift event. Finally, the correlated terraces at Lindos and Plimmiri (which are probably of Tyrrhenian age; Gauthier 1979; Titschack et al. 2008, Fig. 3) are at similar elevations.

Figure 3. The uplift distribution used by Kontogianni et al. (2002), marked by red and black circles. We do not use the uplift measurements at Charaki and Rhodes Town marked by black circles for the reasons discussed in Section 3.2. The solid blue line marks the region of the coast where uplifted marine terraces are seen, and blue dots mark reported elevations of the lowest terrace (Gauthier 1979; Titschack et al. 2008). The region where any late Holocene uplift might be expected to be observed in the resistant limestone cliffs, if it were present, is marked by ‘absence of uplift’. The trace of the fault in Fig. 4(b) is marked by the solid red line. Topography is SRTM (Farr et al. 2007).
Figure 4. Relationship of normal faults observed by Gauthier (1979) to sites where uplift of palæoshorelines was measured. Faults are marked by arrows showing direction of slip in (a) and red lines with tick-marks on the hanging wall side in (c). Points where measurements of palæoshoreline uplift were recorded are marked by filled circles, colour coded according to Fig. 6. The photo in (a) was taken from Charaki, facing NNE. The topography in (c) is from SRTM X-band data (Farr et al. 2007). Panel (b) shows a photograph looking NE along the fault marked by a black line on the inset map, from the point marked by the orange circle.

(~20 m and 25 m, respectively), while the Holocene uplift at Lindos is 2.3 m and 0.2 m at Plimmiri. This discrepancy is easily explained by uplift in large, infrequent earthquakes, where only part of the fault has ruptured during the late Holocene. Smaller, more regular earthquakes would be expected to distribute uplift more evenly. Thus, although uplift over several earthquakes is a possibility, we (like Kontogianni et al. 2002) treat the uplift of the last 6000 yr as the result of a single large earthquake.

3.2 Magnitude of uplift

Eustatic sea level in the eastern Mediterranean over the past 6000 yr is widely agreed not to have been higher than at present (e.g. Lambeck 1995; Sivan et al. 2004; Lambeck & Purcell 2005) and thought to have remained stable (e.g. Lambeck & Bard 2000; Siddall et al. 2003), although variations at the sub-1-m level cannot be ruled out. It is therefore reasonable to assume that the elevations of the palæoshorelines represent a lower bound on coseismic uplift. Investigation of faults capable of producing the observed uplift distribution using dislocation modelling yields a solution with a reverse fault dipping at about 60° (Kontogianni et al. 2002). This steep dip is required by the absence of uplift on the western coast of Rhodes; a reverse fault that dipped more shallowly than 60°, while lifting up the east coast by more than 3 m, would also lift up the western coast.

The elevations of the palæoshorelines must, however, be interpreted with care; in the time since they were lifted up, it is probable that some of them have been disturbed by tectonic activity. A northwest-dipping normal fault, part of the Siana fault zone of ten Veen & Kleinspehn (2002), is clearly expressed in the topography of the western part of the island (Figs 4b and 3). We could not make an unequivocal measurement of rake for this fault, but its morphology (including a steeply incised gorge in its footwall) shows that it is predominantly normal in character and downthrown to the NW. The fault strikes 200°, its dip at the surface is 75°, and it can be traced for 10 km along strike to the north of the location illustrated.
in the inset map in Fig. 4(c). Ten Veen and Kleinspehn mapped numerous other normal faults to the south of the locality in Fig. 3. NW-dipping normal faults have also been observed offshore from the southern tip of Rhodes (Mascle et al. 1986), and GPS data show 4-6 mm yr$^{-1}$ extension between stations on Rhodes and the Datça peninsula in SW Turkey (Fig. 1; Nocquet 2012; Tiryakioğlu et al. 2013). We therefore consider it likely that normal faulting drops down the western coast of Rhodes, possibly removing evidence of uplift in occasional large reverse-faulting earthquakes.

Our analysis modifies the distribution of uplift used by Kontogianni et al. (2002). We also omit the two points marked in black in Fig. 3. The more southerly of those points (Charaki) may be affected by local normal faulting with small throw (see Figs 4a and c); at the northern point (in Rhodes Town), the cliffs are ≲2 m high, so not high enough to record a palaeoshoreline at the >2.5 m elevation that would be expected from the elevation of neighbouring points. We also use a new measurement of palaeoshoreline height at Stegna (3 m; Fig. 3).

The sites marked in red in Fig. 3(b) show the locations used in our analysis of uplift.

3.3 Timing of uplift

We obtained radiocarbon dates for 15 lithophagids (L. lithophaga), 1 arcoïd and 4 corals, with dates shown in Table 1 and Fig. 5. The dating was carried out at the Oxford Radiocarbon Accelerator Unit. We calculated a local reservoir correction, ΔR, of 38 ± 86 yr (1σ) for Rhodes, using reservoir ages from around the eastern Mediterranean (Siani et al. 2000; Reimer & McCormac 2002; Boaretto et al. 2010) and the tools on www.calib.org. The dates shown in Table 1 were calculated using this value of ΔR, the IntCal13 and Marine13 curves (Reimer et al. 2013) and the OxCal program (Bronk Ramsey 1995).

The samples were taken from localities along the eastern coast of Rhodes (Fig. 5). Despite extensive searching, we could find few datable remains of marine organisms, possibly because the maximum shoreline elevation on Rhodes is much lower than in other places that have yielded more abundant samples (e.g. Stewart 1996; Kershaw & Guo 2001; Shaw et al. 2008). Except at Kallithea (red in Fig. 5), we could find uplifted marine organisms only in limestone outcrops protected from marine erosion by wide sandy beaches. All but three of the samples gave Holocene ages. If the size of the sample was sufficiently large it was tested for diagenetic alteration using a scanning electron microscope; the three lithophagids that gave ages older than 30 000 yr were all too small to be tested for diagenetic alteration, so their ages may be unreliable. The single arcoïd shell gave an age of 2000 BP; this shell was found wedged within an abandoned lithophaga boring in what was interpreted at the time of collection to be a life position.

The remaining samples fall into two age groups: one clustered around 6000 BP and another around 4000 BP (see Fig. 5). We interpret the older group as being associated with the mid-Holocene stabilization of sea level. Progradation of deltas was widespread at that time (Stanley & Warne 1994) and this group of samples could have been buried by the increased supply of sediment. We interpret the second group (which consists entirely of lithophagids) as representing organisms that died before uplift in the earthquake. Until recently, radiocarbon ages on lithophagids in tectonic settings were usually interpreted as representing the date of death of the organism. Shaw et al. (2010) demonstrated, however, that lithophagids associated with the uplift of shorelines in the AD 365 earthquake in western Crete gave ages that were systematically at least 350 yr older than the uplift event. Evelpidou et al. (2012) suggested a similar age offset for lithophagids from tsunami boulders in the Gulf of Euboea. An age offset of 400 yr would represent incorporation of about 5 per cent radioactively ‘dead’ carbon from the host rock (Shaw et al. 2010).

The ages from this second group provide an earliest possible date for the earthquake. The youngest calibrated date (sample TZAM12) is between 2009 BC and 1532 BC at the 95 per cent level of confidence. Incorporating a 400-yr offset, by analogy with the samples from western Crete (Shaw et al. 2008, 2010), brings that age range to ~1600–1100 BC. We have scanned the arcoïd (sample TZAM20) using EDBS and determined that it is formed entirely of aragonite, so its age of 316 BC to AD 155 is likely to represent the date of death of the organism. This range therefore provides an alternative earliest possible date for the earthquake; if this is the case, however, the lithophaga ages are 2000–3000 yr older than the earthquake.
Table 1. Details of radiocarbon dates from marine fauna found in the uplifted cliffs of Rhodes. Height is elevation (in m) above the present-day sea level. Organism gives species for lithophagids (all *L. lithophaga*), family for corals (*Caryophyllidae*) and order for the arcoid (*Arcoida*).

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Sample ID</th>
<th>Height (m)</th>
<th>Organism</th>
<th>14C age (years BP)</th>
<th>68.2 per cent probability</th>
<th>95.7 per cent probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>29555</td>
<td>AHKAL1</td>
<td>1.7</td>
<td>Caryophyllidae</td>
<td>4782 ± 31</td>
<td>3175 BC to 2903 BC</td>
<td>3320 BC to 2861 BC</td>
</tr>
<tr>
<td>30043</td>
<td>AHKAL3</td>
<td>1.9</td>
<td>Caryophyllidae</td>
<td>5305 ± 32</td>
<td>3792 BC to 3587 BC</td>
<td>3913 BC to 3497 BC</td>
</tr>
<tr>
<td>30044</td>
<td>AHKAL5A</td>
<td>2.6</td>
<td>L. lithophaga</td>
<td>5535 ± 31</td>
<td>4026 BC to 3801 BC</td>
<td>4160 BC to 3701 BC</td>
</tr>
<tr>
<td>30045</td>
<td>AHKAL5B</td>
<td>2.6</td>
<td>L. lithophaga</td>
<td>5453 ± 30</td>
<td>3941 BC to 3739 BC</td>
<td>4023 BC to 3639 BC</td>
</tr>
<tr>
<td>30046</td>
<td>AHKAL6</td>
<td>2.6</td>
<td>L. lithophaga</td>
<td>5596 ± 31</td>
<td>4141 BC to 3907 BC</td>
<td>4226 BC to 3780 BC</td>
</tr>
<tr>
<td>30049</td>
<td>AHLD2A</td>
<td>1.7</td>
<td>L. lithophaga</td>
<td>34260 ± 350</td>
<td>36781 BC to 35826 BC</td>
<td>37155 BC to 35061 BC</td>
</tr>
<tr>
<td>30047</td>
<td>AHHN3</td>
<td>1.3</td>
<td>L. lithophaga</td>
<td>4317 ± 27</td>
<td>2566 BC to 2309 BC</td>
<td>2727 BC to 2179 BC</td>
</tr>
<tr>
<td>30048</td>
<td>AHHN6</td>
<td>1.4</td>
<td>L. lithophaga</td>
<td>4486 ± 28</td>
<td>2822 BC to 2572 BC</td>
<td>2885 BC to 2448 BC</td>
</tr>
<tr>
<td>30050</td>
<td>AHR1</td>
<td>2.4</td>
<td>L. lithophaga</td>
<td>37370 ± 250</td>
<td>39811 BC to 39346 BC</td>
<td>40030 BC to 39071 BC</td>
</tr>
<tr>
<td>30051</td>
<td>AHR2</td>
<td>2.4</td>
<td>L. lithophaga</td>
<td>32230 ± 160</td>
<td>33992 BC to 33517 BC</td>
<td>34189 BC to 33272 BC</td>
</tr>
<tr>
<td>28100</td>
<td>ARHA4</td>
<td>1.8</td>
<td>Caryophyllidae</td>
<td>5591 ± 31</td>
<td>4137 BC to 3901 BC</td>
<td>4224 BC to 3776 BC</td>
</tr>
<tr>
<td>28099</td>
<td>STEG10</td>
<td>0.6</td>
<td>L. lithophaga</td>
<td>5057 ± 29</td>
<td>35311 BC to 3320 BC</td>
<td>3628 BC to 3139 BC</td>
</tr>
<tr>
<td>28115</td>
<td>STEG013D</td>
<td>1.5</td>
<td>Caryophyllidae</td>
<td>5202 ± 31</td>
<td>3678 BC to 3481 BC</td>
<td>3756 BC to 3356 BC</td>
</tr>
<tr>
<td>27148</td>
<td>TZAM1</td>
<td>2.8</td>
<td>L. lithophaga</td>
<td>4107 ± 33</td>
<td>2287 BC to 2017 BC</td>
<td>2427 BC to 1911 BC</td>
</tr>
<tr>
<td>27214</td>
<td>TZAM2</td>
<td>2.8</td>
<td>L. lithophaga</td>
<td>4185 ± 31</td>
<td>2401 BC to 2141 BC</td>
<td>2521 BC to 2000 BC</td>
</tr>
<tr>
<td>27149</td>
<td>TZAM3</td>
<td>2.6</td>
<td>L. lithophaga</td>
<td>4073 ± 31</td>
<td>2240 BC to 1973 BC</td>
<td>2391 BC to 1869 BC</td>
</tr>
<tr>
<td>27150</td>
<td>TZAM4</td>
<td>2.7</td>
<td>L. lithophaga</td>
<td>3918 ± 29</td>
<td>2018 BC to 1765 BC</td>
<td>2146 BC to 1650 BC</td>
</tr>
<tr>
<td>28097</td>
<td>TZAM12</td>
<td>0.7</td>
<td>L. lithophaga</td>
<td>3819 ± 28</td>
<td>1887 BC to 1652 BC</td>
<td>2009 BC to 1532 BC</td>
</tr>
<tr>
<td>28115</td>
<td>TZAM18</td>
<td>2.0</td>
<td>L. lithophaga</td>
<td>5291 ± 32</td>
<td>3775 BC to 3567 BC</td>
<td>3912 BC to 3482 BC</td>
</tr>
<tr>
<td>28098</td>
<td>TZAM20</td>
<td>1.5</td>
<td>Arcoida</td>
<td>2407 ± 25</td>
<td>161 BC to AD 66</td>
<td>316 BC to AD 155</td>
</tr>
</tbody>
</table>

Table 2. Limits of parameter space searched systematically by our grid search, and the intervals between grid search points. The distances SW and SE from Lindos refer to the distance of the SW end of the fault from the point (28.1°E, 36.05°N) parallel to and perpendicular to a line trending 205° (the strike of the 2000 m bathymetric contour and the approximate strike of the coast). ‘Bottom’ refers to the depth of the lower vertical limit of rupture. All models rupture to the surface. Slip is estimated using standard least-squares methods.

<table>
<thead>
<tr>
<th>Distance SW from Lindos (parallel to coast; km)</th>
<th>Distance SE from Lindos (perpendicular to coast; km)</th>
<th>Strike (°)</th>
<th>Length (km)</th>
<th>Dip (°)</th>
<th>Rake (°)</th>
<th>Bottom (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper limit</td>
<td>30</td>
<td>30</td>
<td>285</td>
<td>90</td>
<td>65</td>
<td>90</td>
</tr>
<tr>
<td>Lower limit</td>
<td>−30</td>
<td>0</td>
<td>195</td>
<td>40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Interval</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

which is very different from the case of western Crete, where only 1 out of 15 *lithophaga* dates was more than 2000 yr before the earthquake. Stiros & Blackman (2013) use the presence of Hellenistic slipways at 3 m above present MSL in Rhodes town to infer that uplift occurred since the third century BC, perhaps in the c. 227 BC Rhodes earthquake (which destroyed the Colossus of Rhodes; e.g. Ambraseyes 2009), but since neither the top nor the bottom of the slipways was found, the exact magnitude of any uplift is not well constrained.

We conclude that the earthquake almost certainly occurred after 2000 BC, and possibly after 300 BC.

4 FAULT PARAMETERS FROM ELASTIC MODELLING OF UPLIFT

We treat the earthquake as uniform slip on a buried rectangular fault in an elastic half-space (Okada 1985). This source is defined by nine parameters: the horizontal coordinates of the two end points of the projection of the rectangle to the surface; the depths of the upper and lower limits of rupture; the fault dip and the strike-parallel and dip-parallel components of slip. We employ a grid search to find the minimum misfit in the parameter space defined in Table 2. The problem is linear in the two components of slip, which can be obtained by standard least-squares methods if the other seven parameters are specified. However, because the observations of uplift on Rhodes are distributed close to a line parallel to the coast, it is not possible to constrain both components of slip from the observations; we prefer to specify either the rake or the horizontal azimuth of slip vector. This allows us to investigate plausible fault orientations consistent with the regional kinematics (Section 4.3) and to avoid solutions with a right-lateral component of slip in what GPS and earthquake data show is a region of overall left-lateral shear (e.g. Shaw & Jackson 2010; Tiryakioğlu et al. 2013).

4.1 Constraints on acceptable fault models informed by tectonic considerations

We consider only NW-dipping faults with a reverse component of slip because this matches the dip of the subducting slab and the dips of active reverse faults in the Rhodes Basin (Woodside et al. 2000; Hall et al. 2009). We constrain the dip of the fault to be less than 65° because this is the maximum dip reliably observed for reverse-faulting earthquakes (e.g. Sibson & Xie 1998; Middleton & Copley 2013). Slip appears to have reached the surface in many of the large reverse-faulting earthquakes of recent years (e.g. Auvac et al. 2006; Chlieh et al. 2007; Liu-Zeng et al. 2009; Lay et al. 2011; Ozawa et al. 2011; Vigny et al. 2011), and there is evidence that where it does not, post-seismic afterslip (the effects of which are included in the observed heights of the palaeoshorelines and therefore our estimates of earthquake source parameters) often extends to the surface (e.g. Hsu et al. 2006; Mahsas et al. 2008; Copley 2014). An earthquake of the size required to produce several metres of uplift on Rhodes may therefore be expected to rupture the seafloor, or at least be associated with a visible bathymetric feature where
the fault projects to the surface. We therefore set the upper surface for all our models to be at zero depth. Reverse faults that offset Quaternary sediments are observed in the Rhodes Basin (Hall et al. 2009), suggesting that this restriction is reasonable.

The likely maximum depth for the lower vertical limit of rupture is given by the thickness of the seismogenic layer underneath Rhodes. Microseismicity reaches a depth of about 40 km on Crete (Meier et al. 2004), and the seismogenic thickness is similar in many other subduction zones (Tichelaar & Ruff 1993), so we allow the depth of the bottom of the rupture in our fault models to be 40 km or shallower.

We specify fault position by the location of one end of the surface projection of the fault, with the other end defined by strike and length. The position of the SW end of the fault in the direction parallel to the coast is well defined by the sharp drop in observed palaeoshoreline height SW of Lindos (Fig. 3b). We assume (as do Kontogianni et al. 2002) that the steep bathymetric escarpment between Rhodes and the Rhodes Basin is maintained through active faulting, an assumption supported by the >200 m elevations of Quaternary marine terraces on Rhodes (Gauthier 1979; Kontogianni et al. 2002). Thus the surface projection of the fault is assumed to be NW of the base of the escarpment, which is ~30 km from the coast. The location of the NE end of the surface projection is constrained only by the absence of observations of either uplift or active reverse faults in the part of the Turkish coast NE of Rhodes, so it is reasonable to assume that the fault does not extend that far; we therefore limit its length to ≤80 km.

The only constraint on the strike of the fault is the existence of the steep bathymetric escarpment SE of Rhodes. If, as seems probable, this escarpment is maintained through repeated faulting, a strike parallel to the contours of bathymetry would be expected. However, the contours of bathymetry (205 ±5° ±1°) are subparallel to the GPS velocities of Rhodes relative to Nubia (≈195°). So if the horizontal azimuth of slip was to match the direction of the GPS velocity, either very oblique slip on a fault striking 205° or a fault that strikes more E-W than the contours of bathymetry is required. Fault models with strike 205° and oblique slip do not match the observed uplift distribution, so we consider two sets of possible fault models that can fit the observed uplift (discussed in Section 4.3):

1. Pure reverse faults that strike parallel to the contours of bathymetry. For this set of models, it is necessary to infer additional faulting somewhere to account for the missing component in the overall convergence between Rhodes and Nubia. For these models, rake is fixed at 90°.

2. Faults with the horizontal azimuth of slip fixed to 195° (the direction of the relative motion), and strike allowed to vary between 205° and 285°.

4.2 Range of acceptable solutions and trade-offs between parameters

We set 40 cm as an upper limit for an acceptable misfit because, while individual uplift measurements may not be accurate to better than 40 cm (Fig. 6), the overall RMS misfit is dominated by the misfit at the sites where uplift is greatest; these individual misfits can be of the order of a metre for an overall RMS misfit of 40 cm (see supplementary material for further details). Some parts of parameter space are excluded by the distribution of observed uplift. No fault model with a dip less than 20° or with a lower limit of rupture shallower than 20 km fits the observed uplift to better than 40 cm RMS misfit. Similarly, unacceptable misfits are found if the location of the SW end of the fault is further than 5 km from Lindos in the direction parallel to the coast.

A wide variety of tectonically plausible fault models fit the observed uplift satisfactorily. We illustrate this range of solutions in Fig. 6 and Table 3; in Figure 6 they are arranged in two groups: pure reverse faulting on faults parallel to the contours of bathymetry in columns 1 (20–25 km rupture depth) and 2 (40 km rupture depth) and slip in the direction of southern Aegean–Nubia relative motion on faults that are oblique to the contours of bathymetry (column 3). In all cases, trade-offs arise because the observations of uplift are confined to an almost linear piece of coastline (see supplementary material for further information). Solutions B and C (Fig. 6) illustrate the trade-off between dip and magnitude of slip in the pure reverse-faulting case, which arises because the steeper the dip of the fault, the more sharply uplift drops off with distance from the fault. Models D and E illustrate a trade-off between magnitude of slip and distance of the fault from the coast, for similar reasons. A third trade-off exists between the depth extent of faulting and the distance from the coast: fault models that rupture to 40 km depth are able to fit the observed uplift with surface projections up to 25–30 km from the coast (E, F), whereas for fault models rupturing from the surface to 20 km depth the maximum distance from the coast is 10 km (A, C). There is also a trade-off between fault length and magnitude of slip, but this is relatively small, contributing a variation of about 1 m in slip. Faults with lengths between 45 and 75 km (models A and F) are able to fit the observed uplift equally well, but we consider that longer faults are marginally more likely because their ratio of slip to length is more typical of continental earthquakes (Scholze et al. 1986; Wells & Coppersmith 1994).

Similar trade-offs apply to fault models with oblique slip (models G–I), but their effects are harder to discern because of variation in strike between models. It should be noted that some of the fault models in Fig. 6 predict ~1 m uplift on the Datça Peninsula in SW Turkey (Fig. 1). While this has not been observed, there have been few detailed studies of the region, and some of the shorelines are subject to subsidence related to the N–S extension of SW Turkey (e.g. Altunel et al. 2003; Ulug et al. 2005). Furthermore, uplift scales linearly with slip, so that far-field uplift is much more sensitive to uncertainties in sea level history. For example, the combination of a 25 per cent increase in magnitude of slip and a 1 m eustatic sea-level rise following uplift could conceal 1 m of far-field uplift while keeping observed heights of the highest palaeoshorelines on Rhodes the same relative to modern sea level.

This uncertainty in sea level also means that it would be unproductive to analyse the possible effects of interseismic deformation and post-seismic viscous relaxation, since our estimates of palaeoshoreline uplift are already minima (Section 3). For the fault geometries in Fig. 6, the sites where uplift was observed on the coast are in the region where interseismic motion might be expected to cause subsidence (e.g. Sieh et al. 1999; Adér et al. 2012). Moreover, modelling of post-seismic viscous relaxation for a fault in a similar setting on SW Crete suggests that apart from in the region beyond the lower (down-dip) limit of faulting (which in the present case is underwater), its contribution is minimal (~10 per cent of observed palaeoshoreline height; Shaw et al. 2008).

4.3 Fault models consistent with uplift and bathymetry

We have investigated two cases; in one the fault responsible for uplift slips predominantly in the reverse sense, in the other the slip...
Figure 6. Predicted uplift distributions for fault models matching the observed uplift on Rhodes and their source parameters, which are also listed in Table 3. A–F are pure reverse-faulting solutions with their strike constrained to be parallel to the bathymetric contours (205°), and models G–I are oblique-slip models with no constraint on strike but a horizontal azimuth of slip vector constrained to be parallel to the GPS velocity at Archangelos relative to Nubia (the northern green arrow; DeMets et al. 2010; Nocquet 2012). J compares predicted uplift for the labelled models to observed uplift (shown in red) at the sites in Fig. 3, with ±60 cm error bars to illustrate the possible effects of errors in measurement of palaeoshoreline height and estimation of the present-day sea level. Distance NE refers to the distance in the 025° direction from the southernmost of the uplift sites shown in Fig. 3. Depth refers to the lower limit of rupture in the model, as all fault models rupture from the surface to this depth.
is highly oblique, matching the direction of relative motion between Rhodes and Nubia. Models A–F (Fig. 6) represent the former case and models G–I the latter. Large-magnitude earthquakes with slip as oblique as model G are rare but have been observed, for example in the 2009 Dusky Sound earthquake (Beavan et al. 2010), while less oblique slip vectors such as that of model I are more common (e.g. Avouac et al. 2006; Liu-Zeng et al. 2009). However, although fault models G–I are able to fit the uplift data with a low misfit, there are several features of their uplift distributions that make a coast-parallel reverse fault more likely.

Oblique slip on faults close to the coast (models G–H) predicts a maximum in uplift immediately NE of Lindos, which is not observed (see spatially organized misfits in Fig. 6j), so for models G and H local normal faulting and subsidence must be inferred in order to explain the observed uplift distribution. Kontogianni et al. (2002) indeed suggest that subsidence from a normal fault is necessary to explain the lower palaeoshoreline height at Charaki (pink in Fig. 6j) relative to Lindos, further SW. Models G and H require subsidence of ~2 m at Charaki in order to fit the observations, as well as smaller amounts of subsidence (~0.5 m) further north. We suggest that the most likely set of faults to have caused subsidence at Charaki are the obvious W-dipping faults in the massif 2–3 km north of Charaki (Gauthier 1979; Fig. 4, this study). Charaki is in the hanging wall of these faults while Stegna is in their footwall, and the 1.2 m difference in palaeoshoreline height over the 6 km between the two sites is most easily explained by slip on these faults, especially as there is no obvious N-dipping normal fault between Charaki and Lindos to the SW. However, in order to counter the modelled uplift from faults G and H in Fig. 6, both Charaki and Stegna must subside in presumed normal faulting for which there is no evidence. We therefore discount both models G and H.

The observed coastal uplift cannot be used to differentiate between the more E–W fault in model I and the reverse-faulting models A–F, as their predicted uplift distributions are almost indistinguishable over the region where data are available. However, model I does predict maximum uplift in the deepest part of the Rhodes Basin, with no recognizable bathymetric relief associated with the projection of the fault to the surface. This makes faulting similar to that in model I an implausible way to explain the longer-term Quaternary uplift on Rhodes, and since the location of the maximum elevation of the marine terraces and the maximum late Holocene palaeoshoreline uplift approximately coincide (Kontogianni et al. 2002), we suggest that the long-term and short-term uplift probably result from slip on the same fault. We therefore discount faulting with the more E–W strike of model I.

From the range of parameter space we investigated (illustrated in Figs 6a–f), we conclude that such a fault is likely to have a length of 45–75 km, a dip of 20–60°, a strike of 205°, slip of 8–11 m and a lower limit of rupture between 20 and 40 km depth. The resultant earthquake would have had a magnitude $M_W \geq 7.7$, which clearly represents a significant regional hazard.

5 Tsunamigenic Potential of an Earthquake Uplifting Rhodes

The Hellenic Trench System earthquakes of AD 365 and AD 1303 both caused tsunamis that damaged coasts around the eastern Mediterranean, including the Nile Delta. Our radiocarbon data (Section 3.3) suggest that the earthquake responsible for uplift on Rhodes occurred long before either of these tsunamis, but a reverse-faulting earthquake of $M_W \geq 7.7$ might be expected to cause at least a locally damaging tsunami. We therefore model tsunamis from fault models A–F (Fig. 6), using the calculated seafloor uplift distribution as an initial perturbation in sea surface height. Uncertainties in our tsunami initial condition and the lack of readily available high-resolution bathymetry for eastern Mediterranean coasts mean that we restrict our models to the offshore region (>20 m depth), using MOST (Titov & Synolakis 1995, 1998) to model propagation on a 1° ETOPO bathymetric grid (Amante & Eakins 2009).

Tsunami propagation is approximately radial (Fig. 7a). Travel times are approximately the same for all models: ~40 min to Cyprus and ~60 min to the Nile Delta. Some fault models (notably E–F) predict higher tsunami heights over a wider area than others (fault model D predicts the smallest tsunami). Maximum tsunami heights are illustrated in Fig. 7(b), showing predicted heights of >1 m offshore from Rhodes and SW Turkey, and also off the coast of Cyprus for the sources with greater tsunamigenic potential (Model E). These wave heights would be expected to translate into higher runup heights on land; for example, the 2010 Mentawai earthquake ($M_W 7.8$) produced a maximum wave height of <1 m in the open ocean but 6 m runup on land (Hill et al. 2012).

The shallow bathymetry offshore and the associated non-linear effects of bottom friction and wave breaking on dissipation of
Tectonic uplift of Rhodes, Greece

Figure 7. Modelled tsunamis using some of the fault models in Fig. 6 as initial conditions. Panel (a) shows wave propagation across the eastern Mediterranean at 20, 40 and 60 min after the earthquake, using fault model C as an initial condition. Panel (b) shows maximum predicted wave heights for fault models D and E. Panel (c) shows the regions where predicted maximum wave heights resulting from the labelled fault models (from Fig. 6) are higher than those predicted using the best-fitting uplift model for AD 365 (Shaw et al. 2008) as an initial condition. The source parameters for the AD 365 fault model are shown in Table 3.

tsunami energy make it difficult to estimate how offshore tsunami heights might relate to onshore flooding (Korycansky & Lynett 2005; ten Brink et al. 2007). For this reason, we compare the predicted tsunami heights using our fault models with those predicted for AD 365 using the preferred fault model of Shaw et al. (2008) (Fig. 7c). We assume that since there is abundant historical evidence for damage throughout the Nile Delta in AD 365 (Shaw et al. 2008; Ambraseys 2009), a tsunami model where offshore wave heights are greater than those predicted for AD 365 is likely to be capable of damage onshore. Most of our fault models predict tsunami heights smaller than for AD 365 off the Nile Delta, but tsunamis predicted from models E–F predict higher wave heights off the eastern Nile Delta.

We therefore conclude that of the plausible fault models investigated, even those with the lowest tsunamigenic potential would be capable of significant regional tsunami damage in SW Turkey and Rhodes, while those with the highest tsunamigenic potential (from higher-magnitude fault models) would also be capable of damage to Cyprus and the Nile Delta.

6 TECTONIC IMPLICATIONS

6.1 Accommodation of transcurrent motion between Nubia and the Aegean

We have argued in Section 4.3 that the uplift of Rhodes probably arises from almost pure reverse slip on a fault that crops out at one of the steep bathymetric features of its eastern coast. This raises the question of where the remainder of the highly oblique relative motion between Nubia and the southern Aegean is accommodated. It is commonly observed that oblique convergence at plate boundaries is split between parallel reverse and strike-slip faults with orthogonal slip vectors (an arrangement often referred to as ‘partitioning’, e.g. Fitch 1972; McCaffrey 1996; Lay et al. 2013). Where such a configuration is observed, the strike-slip fault invariably lies in the overriding plate. The relative motions of the GPS sites on Rhodes, both with respect to Nubia and with respect to the interior of the Aegean, rule out the accommodation of the transcurrent motion on a fault that lies to the north and west of those sites, which are in the eastern part of Rhodes. Therefore, if this configuration of faulting
A. Howell et al.

Figure 8. Possible configurations of faulting around the Rhodes Basin. Panel (a) shows bathymetry (SRTM30+; Becker et al. 2009), the locations of earthquakes from the EHB catalogue (Engdahl et al. 1998) and the paths of the profiles in (b) and (c). Panel (b) shows a possible interpretation of faulting where the floor of the Rhodes Basin is part of stable Nubia, and the strike-slip component of Rhodes–Nubia convergence is accommodated on a fault (or shear zone) between the reverse fault and the coast. Topography is a vertically exaggerated profile along the red line UV in (a). Panel (c) shows our preferred interpretation in which Rhodes is uplifted on a steeper-dipping fault above the main subduction interface. The earthquakes in this figure are projected onto the blue line XYZ in (a) from 40 km either side. The blue line shows a vertically exaggerated topographic profile along the line XYZ in (a).

applies, any strike-slip motion must occur in the <30 km between the outcrop of the reverse fault and the coast of Rhodes and, as illustrated in Fig. 8(b), the strike-slip and reverse faults must intersect at about 20 km as has, for example, been suggested for Haida Gwaii (Lay et al. 2013).

There is, however, little evidence to support the configuration of faulting illustrated in Fig. 8(b). In particular, no earthquake within the overriding plate of this region has exhibited a strike-slip focal mechanism. Furthermore, over the last 6000 yr, the earthquake responsible for uplift of Rhodes only accounts for ~10 m of the 40 m shortening in the direction perpendicular to the coast expected from GPS data (bearing 115°), which suggests that at least one additional fault with a reverse component of motion is required to accommodate the remainder of the Rhodes–Nubia convergence.

An alternative solution, illustrated in Fig. 8(c), is suggested by the observation that the subduction interface is essentially aseismic, and by the suggestion of Shaw et al. (2008) that the rare great earthquakes in the Hellenic plate boundary zone take place on reverse faults within the overriding continental crust. For western Crete, where the relative motion is perpendicular to the strike of the plate boundary, Shaw et al. (2008) suggested that the compressional deviatoric stresses causing this reverse faulting arise from a reduction in the slip velocity from the deeper to the shallower parts of the subduction interface (Shaw et al. 2008, fig. 5). We extend this idea to the eastern end of the plate boundary zone, suggesting that the subduction interface absorbs, predominantly aseismically, most of the oblique convergence between Nubia and the Aegean, but with some or all of the convergence being taken up on arc-perpendicular reverse faults (Fig. 8c).

6.2 Accommodation of motion near the Pliny and Strabo Trenches

The Pliny and Strabo Trenches, to the SW of Rhodes, are much further from the nearest land than either the Rhodes Basin or the Hellenic Trench, so faulting in the area would not be expected to produce coastal uplift. However, there have been numerous small earthquakes in this region since 1960, which provide an insight into its kinematics. Fig. 9 shows focal mechanisms for earthquakes
whose depths are either unknown (from the CMT catalogue or first motions; McKenzie 1972, 1978; Dziewonski et al. 1981; Ekström et al. 2012) or determined by waveform modelling to be in the overriding Aegean lithosphere (Shaw & Jackson 2010, this study).

GPS velocities on the Dodecanese islands (Rhodes and Karpathos) show that motion of the islands relative to Nubia is oblique (~45°) to both the subduction zone and the Pliny and Strabo Trenches. However, the slip vectors of the strike-slip and oblique earthquakes, the slip vectors chosen are the ones that are consistent with left-lateral shear and slip vectors in the range 180–280°. For dip-slip earthquakes, slip vectors are shown where the motion of a plausible hanging wall relative to a corresponding footwall is in this range of azimuths. Earthquakes that do not fit this pattern are shown without slip vectors. GPS velocities are from Nocquet (2012) and have been rotated so that they are relative to Nubia using the pole of DeMets et al. (2010). Waveform modelling used the MT5 version (Zwick et al. 1994) of the inversion algorithm of McCaffrey & Abers (1988) and McCaffrey et al. (1991).

Figure 9. Earthquake focal mechanisms and slip vectors for the Pliny and Strabo Trenches and the Rhodes Basin. Focal mechanisms appearing in red, pink and orange are waveform-modelled, and are sourced either from the compilation of Shaw & Jackson (2010) (red and pink) or from this study (orange). The numbers next to focal mechanisms show earthquake depths (in km). For the strike-slip and oblique earthquakes, the slip vectors chosen are the ones that are consistent with left-lateral shear and slip vectors in the range 180–280°. For dip-slip earthquakes, slip vectors are shown where the motion of a plausible hanging wall relative to a corresponding footwall is in this range of azimuths. Earthquakes that do not fit this pattern are shown without slip vectors. GPS velocities are from Nocquet (2012) and have been rotated so that they are relative to Nubia using the pole of DeMets et al. (2010). Waveform modelling used the MT5 version (Zwick et al. 1994) of the inversion algorithm of McCaffrey & Abers (1988) and McCaffrey et al. (1991).

6.3 Implications for arc-perpendicular normal faulting

While arc-parallel and arc-perpendicular normal faults are equally prominent in the geomorphology of the Hellenic plate boundary zone (e.g. Armijo et al. 1992; ten Veen & Kleinseph 2002; Caputo et al. 2010; Gallen et al. 2014), the focal mechanisms that have been obtained for normal-faulting earthquakes in the past 60 yr show faulting only on the arc-perpendicular normal faults (i.e. arc-parallel extension). Furthermore, the present-day strain-rates derived from GPS observations (e.g. Floyd et al. 2010; Reilinger et al. 2010; Nocquet 2012) show arc-parallel extension and predominantly arc-perpendicular contraction (England et al. 2015, their fig. 1b). We
suggest that arc-perpendicular extension is suppressed by the compressional deviatoric stresses discussed in Section 6.1 and that extension occurs only in association with the release of compressional stress when the rare great earthquakes occur, as observed by Farias et al. (2011) after the 2010 Mw 8.8 Maule earthquake and by Asano et al. (2011) after the 2011 Tohoku-oki earthquake.

7 CONCLUSIONS

Elevated marine paleoshorelines on Rhodes provide evidence for late-Holocene tectonic uplift, and the presence of higher marine terraces shows that uplift has been continuous throughout the Quaternary. The morphology of the raised Holocene shorelines, their relationship to terrace elevations and new AMS radiocarbon dates from uplifted marine fauna are most consistent with uplift in a single earthquake after 2000 BC. Widespread normal faulting in the centre of Rhodes means that several source parameters (notably the dip) are poorly constrained, but the earthquake appears to have been a large reverse-faulting event, probably on a steeper-dipping fault above the main subduction interface. If, as seems likely, the same fault is responsible for the late-Holocene and Quaternary uplift, it cannot also accommodate the left-lateral shear observed between Rhodes and Nubia. We suggest that, instead, this NE–SW component is accommodated by oblique slip on a lower subduction interface beneath the Rhodes Basin, although strike-slip faulting further out into the basin is also possible. In the region of the Pliny and Strabo Trenches (SW of Rhodes), earthquakes occur shorewards of the trenches but with trench-parallel slip vectors. This suggests that the Pliny and Strabo trench system may be partitioned in a similar manner to Haida Gwaii, in the Cascadia subduction zone, and that the relief across them may be an expression of reverse faulting; a fault outcropping in either the Pliny or Strabo Trench is a possible location for the AD 1303 earthquake. Modelling of tsunami propagation from a range of tectonically plausible earthquake sources suggests that earthquakes on the fault uplifting Rhodes represent a significant tsunami hazard for Rhodes and SW Turkey, and also possibly for Cyprus and the Nile Delta, but uncertainties in earthquake source parameters prevent a more accurate assessment of tsunami hazard.

ACKNOWLEDGEMENTS

AH is supported by a Shell Studentship. This study forms part of the NERC- and ESRC-funded project ‘Earthquakes Without Frontiers’. We thank Alex Thomas for useful discussions, Dan McKenzie and Alex Copley for comments on the manuscript and two anonymous reviewers for detailed and thoughtful reviews. The figures were mostly constructed using the Generic Mapping Tools (Wessel et al. 2013) and Matplotlib (Hunter 2007).

REFERENCES

Tectonic uplift of Rhodes, Greece

Hsu, Y.-J. et al., 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, *Science*, 312(5782), 1921–1926.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this paper:

Figure S1. Variation of absolute rmsfits at individual sites (shown by the letters on the map) where uplift was observed with dip and distance from the coast. Black lines show contours of overall RMS misfit for the same models. Fault length is fixed at 60 km, strike is 205° and slip vector is 115°. The fault ruptures from the surface to 40 km depth, and the SW end of the fault is constrained to lie on a bearing of 115° from Lindos (0 km along strike). Rake is fixed at 90°.

Figure S2. Illustration of trade-offs between slip, dip and distance of the fault from the coast. (a) shows the variation in best-fitting slip, with all parameters apart from dip and distance from the coast fixed. The fault is constrained to strike at 205°; rupture is from the surface to 40 km depth; the length of the fault is 60 km and the SW end is constrained to lie on a bearing of 115° from Lindos (0 km along strike). Rake is fixed at 90°.

Figure S3. Illustration of trade-offs between RMS misfit, distance of the fault from the coast and maximum depth of rupture. The fault is constrained to strike at 205° and dip at 40°; rupture is from the surface to the depth specified; the length of the fault is 60 km and the SW end is constrained to lie on a bearing of 115° from Lindos (0 km along strike). Rake is fixed at 90°.

Figure S4. Illustration of trade-offs between slip, dip and distance of the fault from the coast. (a) shows the variation in best-fitting slip, with all parameters apart from length and distance from the coast fixed. (b) shows variation in RMS misfit over the same region of parameter space. The fault is constrained to strike at 205° and dip at 60°; rupture is from the surface to 40 km and the SW end is constrained to lie on a bearing of 115° from Lindos (0 km along strike). Rake is fixed at 90°.

Figure S5. Variation of minimum RMS misfit with strike and dip, with horizontal azimuth of slip vector fixed at 195° and all other parameters free to vary within the limits in Table 1 (main text). Letters show the locations in parameter space of models G–I (Fig. 6, main text).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the paper.