The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

Neave, David A. and Maclennan, John and Thordarson, Thorvaldur and Hartley, Margaret E. (2015) The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash). Contributions to Mineralogy and Petrology, 170 (2). pp. 1-23. ISSN 0010-7999 (Print) 1432-0967 (Online) DOI

art%3A10.1007%2Fs00410-015-1170-3.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
410_2015_1170_Fig1_HTML.gif - Published Version
Available under License Creative Commons Attribution.

Download (63kB) | Preview
[img] Text
410_2015_1170_MOESM1_ESM.xls - Supplemental Material

Download (89kB)
[img] Text
410_2015_1170_MOESM2_ESM.xls - Supplemental Material

Download (157kB)
[img] Text
410_2015_1170_MOESM3_ESM.eps - Supplemental Material

Download (428kB)
Official URL:


Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–1784 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An78–An92, Mg#cpx = 82–87, Fo79.5–Fo87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An60–An68, Mg#cpx = 71–78, Fo70–Fo76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Ybmelt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Ybmelt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high-field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal–melt equilibration within the evolved assemblage occurred at ~1140 °C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300 °C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene–melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene–melt equilibria return mid-crustal pressures of 4 ± 1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral–melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.

Item Type: Article
Uncontrolled Keywords: 2015AREP; IA70; weekly list
Subjects: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
Divisions: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
07 - Gold Open Access
Journal or Publication Title: Contributions to Mineralogy and Petrology
Volume: 170
Page Range: pp. 1-23
Identification Number:
Depositing User: Sarah Humbert
Date Deposited: 01 Apr 2016 10:00
Last Modified: 01 Apr 2016 14:47

Actions (login required)

View Item View Item

About cookies