In situ Raman characterization of minerals and degradation processes in a variety of cultural and geological heritage sites

Gázquez, Fernando and Rull, F. and Sanz-Arranz, A. and Medina, J. and Calaforra, J.M. and de las Heras, C. and Lasheras, J.A. (2017) In situ Raman characterization of minerals and degradation processes in a variety of cultural and geological heritage sites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 172. pp. 48-57. ISSN 13861425 DOI 10.1016/j.saa.2016.04.035

[img] Text
1-s2.0-S1386142516302074-main.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://doi.org/10.1016/j.saa.2016.04.035

Abstract

We test the capabilities of in situ Raman spectroscopy for non-destructive analysis of degradation processes in invaluable masterpieces, as well as for the characterization of minerals and prehistoric rock-art in caves. To this end, we have studied the mechanism of decay suffered by the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (N Spain). In situ Raman probe detected hydrated sulfate and nitrate minerals on the sculptures, which are responsible for the decay of the original limestone. In addition, in situ Raman analyses were performed on unique speleothems in El Soplao Cave (Cantabria, N Spain) and in the Gruta de las Maravillas (Aracena, SW Spain). Unusual cave minerals were detected in El Soplao Cave, such as hydromagnesite (Mg5(CO3)4(OH)2·4H2O), as well as ferromanganese oxides in the black biogenic speleothems recently discovered in this cavern. In the Gruta de las Maravillas, gypsum (CaSO4·2H2O) was identified for the first time, as part of the oldest cave materials, so providing additional evidence of hypogenic mechanisms that occurred in this cave during earlier stages of its formation. Finally, we present preliminary analyses of several cave paintings in the renowned “Polychrome Hall” of Altamira Cave (Cantabria, N. Spain). Hematite (Fe2O3) is the most abundant mineral phase, which provides the characteristic ochre-reddish color to the Altamira bison and deer paintings. Thus, portable Raman spectroscopy is demonstrated to be an analytical technique compatible with preserving our cultural and natural heritage, since the analysis does not require physical contact between the Raman head and the analyzed items.

Item Type: Article
Uncontrolled Keywords: 2016AREP; IA72;
Subjects: 01 - Climate Change and Earth-Ocean Atmosphere Systems
99 - Other
Divisions: 01 - Climate Change and Earth-Ocean Atmosphere Systems
99 - Other
Journal or Publication Title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Volume: 172
Page Range: pp. 48-57
Identification Number: 10.1016/j.saa.2016.04.035
Depositing User: Sarah Humbert
Date Deposited: 05 Mar 2017 22:30
Last Modified: 07 Mar 2017 11:17
URI: http://eprints.esc.cam.ac.uk/id/eprint/3837

Actions (login required)

View Item View Item

About cookies