Temporal evolution of the magmatic system at Tungurahua Volcano, Ecuador, detected by geodetic observations

Muller, Cyril and Biggs, Juliet and Ebmeier, Susanna K. and Mothes, Patricia and Palacios, Pablo B. and Jarrín, Paul and Edmonds, Marie and Ruiz, Mario (2018) Temporal evolution of the magmatic system at Tungurahua Volcano, Ecuador, detected by geodetic observations. Journal of Volcanology and Geothermal Research, 368. pp. 63-72. ISSN 03770273 DOI https://doi.org/10.1016/j.jvolgeores.2018.11.004

[img] Text
1-s2.0-S0377027318301628-main.pdf - Accepted Version

Download (5MB)
[img] Text
Geodetic_tungurahua_v8_ME.pdf - Published Version
Restricted to Repository staff only

Download (9MB) | Request a copy
Official URL: https://doi.org/10.1016/j.jvolgeores.2018.11.004

Abstract

Changes in the pathway and timescale of magma ascent can be responsible for variations in eruptive style during long-lived eruptions, but are only documented at a small number of well-instrumented systems. Here we integrate PS-InSAR from high resolution TerraSAR-X radar imagery with continuous GPS data from 4 sites at Tungurahua volcano, Ecuador. Our results show long-term uplift between 2011 and 2014 associated with a continuously inflating prolate spheroid reservoir at a depth of ∼ 10 km beneath the summit. Comparisons with eruptive flux, taking compressibility into account, suggest that during this time period slightly over half the magma supplied to the system was erupted. The observations span three distinct phases of eruption and in 2012–2013, an increase in eruptive activity was accompanied by uplift on the volcano's western flank. Similar episodes have previously been observed during large Vulcanian eruptions and we attribute them to intrusions into an area of mechanical weakness. A localised patch of subsidence mid-way up the Tungurahua's western flank is co-located with a swarm of shallow long-period seismicity and may represent a potential site for a development of a lateral vent. This study demonstrates that satellite geodetic techniques are capable of characterising the geodetic signature of transitions in eruptive style during long-lived andesitic eruptions even where deformation is low magnitude and measurements are challenging.

Item Type: Article
Uncontrolled Keywords: 2018AREP; IA74
Subjects: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
Divisions: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
08 - Green Open Access
Journal or Publication Title: Journal of Volcanology and Geothermal Research
Volume: 368
Page Range: pp. 63-72
Identification Number: https://doi.org/10.1016/j.jvolgeores.2018.11.004
Depositing User: Sarah Humbert
Date Deposited: 07 Feb 2019 18:30
Last Modified: 07 Feb 2019 18:30
URI: http://eprints.esc.cam.ac.uk/id/eprint/4417

Actions (login required)

View Item View Item

About cookies