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SUMMARY

We present a numerically exact method for calculating the internal and external gravitational
potential of aspherical and heterogeneous planets. Our approach is based on the transformation
of Poisson’s equation into an equivalent equation posed on a spherical computational domain.
This new problem is solved in an efficient iterative manner based on a hybrid pseudospec-
tral/spectral element discretization. The main advantage of our method is that its computational
cost reflects the planet’s geometric and structural complexity, being in many situations only
marginally more expensive than boundary perturbation theory. Several numerical examples
are presented to illustrate the method’s efficacy and potential range of applications.
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1 INTRODUCTION

The calculation of a planet’s gravitational potential is required in diverse areas of geophysics and planetary science, including studies of
free oscillation seismology (e.g. Woodhouse & Dahlen 1978), body tides (e.g. Wahr 1981), rotational dynamics (e.g. Smith 1977), orbital
evolution (e.g. Kaula 1964) and glacial isostatic adjustment (e.g. Peltier 1974). Neither the Earth nor any other planetary body of interest is
geometrically spherical, where we follow the terminology of Al-Attar & Crawford (2016) and define a planet to be geometrically spherical
if its internal and external boundaries form a series of concentric spheres. Within a geometrically spherical planet Poisson’s equation can be
reduced in an exact manner to a decoupled system of ordinary differential equations for the spherical harmonic coefficients of the potential.
These differential equations can be solved using numerical quadrature, making it easy to calculate the planet’s gravitational potential to any
desired level of accuracy.

A number of approaches have been developed to account for asphericity within calculations of the gravitational potential. It is most
common to assume the deviation of a boundary from an appropriate reference sphere to be small and determine its contribution to the
gravitational potential using first-order boundary perturbation theory. In fact, for many applications, lateral variations in density are also
regarded as first-order quantities, and this allows for the asphericity of the planet to be handled with minimal effort. Higher-order extensions
of this boundary perturbation theory have been developed (e.g. Nakiboglu 1982; Chambat & Valette 2005) and the improvements over the
first-order theory are significant for some terrestrial applications (e.g. Mitrovica et al. 2005; Chambat et al. 2010). The use of higher-order
boundary perturbation theory, however, is both time-consuming and cumbersome, particularly when the coupling of such calculations into
dynamic problems is considered.

Non-perturbative methods for calculating the external gravitational potential of aspherical bodies have been described a number of
times in both the geophysics and planetary science literature. This includes, for example, the work of Parker (1973), Parker & Shure (1985),
Martinec et al. (1989) and Balmino (1994) based on spectral expansions of the exterior gravitational potential of piecewise homogeneous
bodies, and studies by Barnett (1976), Waldvogel (1979) and Werner (1994) using homogeneous polyhedral models for which the necessary
integrals can be performed analytically. Whilst these methods are useful within their intended applications it seems unlikely that they can be
readily extended to the calculation of the internal gravitational potential of a general heterogeneous planet. We note, however, that the method
of Hubbard (2012, 2013), which is based on a combination of spectral and multipole expansions, can be applied to ellipsoidally symmetric
bodies, and allows for accurate calculation of both the internal and external potential.

It is only quite recently that non-perturbative methods for calculating the internal gravitational potential of aspherical planets have been
considered, this being motivated largely by the desire to model their dynamics without unnecessary approximations. At first sight, it might
seem that this should be a simple problem. Indeed, we need only consider a linear partial differential equation with constant coefficients,
whereas problems that are ostensibly far more complicated are now solved routinely using numerical methods. The difficulty with our problem,
however, is that Poisson’s equation is not defined in a finite domain, but within all of space. Of course, one could attempt to approximate the
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whole of space by a sufficiently large computational domain, but this has been shown to be both inaccurate and inefficient (Gharti & Tromp
2017).

Within the geophysics literature three main approaches to this *infinite-domain problem’ have been discussed. First, Chaljub & Valette
(2004) used a Dirichlet-to-Neumann (DtN) map to reduce Poisson’s equation in R® to an equivalent problem defined within a finite spherical
domain containing the body of interest. The DtN map introduces non-local boundary terms into the problem, which comes with an associated
computational cost. Chaljub & Valette’s approach seems to have been impractical for its original application to long period seismology, but it
has subsequently been employed in quasi-static deformation calculations by Métivier et al. (2006), Al-Attar & Tromp (2014), Crawford et al.
(2016) and Crawford et al. (2018).

A second approach to calculating the internal potential field was described by Latychev et al. (2005) within their finite-volume method
for modelling glacial isostatic adjustment. Here the internal gravitational potential was obtained through direct numerical evaluation of the
Newtonian potential integrals at each point within the body. This method, however, is rather costly and care is needed in accounting for the
singular nature of the integrands.

Most recently, a powerful approach known as the ’spectral infinite-element method” has been described within a series of papers by
Gharti & Tromp (2017), Gharti et al. (2018) and Gharti et al. (2019). This is a variant of the infinite-element method developed within the
engineering literature (e.g. Bettess 1977; Beer & Meek 1981; Medina & Taylor 1983) and reduces the exterior problem to the addition of a
single layer of elements onto the interior domain, but without the need for non-local boundary terms. Numerical tests show this method to be
both accurate and comparatively efficient while offering the flexibility to calculate the gravitational potential of an almost arbitrarily complex
object.

Given the preceding comments it might seem that there is no problem left to solve. But this view leaves us with a rather stark gap
in computational cost: within a geometrically spherical planet the gravitational potential can be determined in an almost trivial manner
using spherical harmonic expansions, while in an aspherical planet the problem requires the assembly and solution of a large system of linear
equations associated with the spectral-infinite-element discretization. The aim of this paper is to present an alternative method for gravitational
potential calculations that fills out the middle ground, providing a numerically exact solution to the problem, but with a computational cost
that reflects the planet’s geometric complexity. In doing this we must sacrifice some generality in the planet’s form, but will see that a usefully
large class of structures can still be accounted for. The solution is 'numerically exact’ in the sense that the only source of error is truncation
of the radial and angular bases on which the problem is discretized: by taking sufficiently many terms in the expansion we can, in principle,
achieve any desired level of accuracy.

The key idea in our method is the transformation of Poisson’s equation into a new equation defined in a geometrically spherical reference
domain (cf. Woodhouse 1976; Jobert 1976; Takeuchi 2005; Al-Attar & Crawford 2016; Leng et al. 2019). The introduction of such a mapping
is similar to, and can be seen as a generalization of, Clairaut’s approach to ellipsoidal equilibrium figures (e.g. Clairaut 1743; Chambat
& Valette 2005). Whilst this transformed equation has laterally varying and tensorial coefficients, the geometrical sphericity of its domain
means that it can be solved numerically using an approach based on generalized spherical harmonic (GSPH) expansions combined with a
spectral element discretization in the radial co-ordinate (e.g. Al-Attar & Tromp 2014; Crawford et al. 2018). The lateral heterogeneity of
the equation’s coefficients leads to coupling between the different spherical harmonic orders and degrees, but the resulting linear system
can be solved using a pre-conditioned iterative method similar to that of Al-Attar et al. (2012). Crucially, the closer the planet is to being
geometrically spherical, the more quickly the iteration converges.

2 THEORY

2.1 Poisson’s Equation for the gravitational potential

We begin by recalling the Poisson equation governing a planet’s gravitational potential. The planet is assumed to occupy a compact
subset M R® with open interior, and smooth external boundary d M. Its interior is then further subdivided into a finite number of non-
interpenetrating regions, with the union of all internal and external boundaries denoted by . The planet’s gravitational potential ¢ satisfies
the Poisson equation

29 = 4nG 6]

which is to hold within R®, where is the density, G the universal gravitational constantand 2 the Laplacian operator; the density is non-zero
only in M. This equation is solved subject to the boundary and regularity conditions

() [e]*=[A, @l"=0forx
(ii)g - 0as x — oo,

where fi is the outward unit normal vector to a boundary, [-]* denotes the jump in a quantity across the boundary in the direction of Ai, is
the gradient operator, -, - denotes the standard inner product on R®,and - is the associated norm.
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2.2 Weak form of Poisson’s equation

Following Chaljub & Valette (2004), we will express the problem in weak form on a bounded domain through the use of an appropriate DtN
map. LetB ={x R®| x < b}denote aclosed ball of radius b which contains M, and (s be a sufficiently regular complex-valued function
defined on B. We multiply eq. (1) by the complex-conjugate (s of this test function and integrate to obtain

( ’oudx=4nG  Pdx. ()
B M

The use of complex-valued functions is to facilitate our later introduction of spherical harmonic expansions. Integrating the left hand side of

eq. (2) by parts we arrive at

9, ¢ d®x— A, @ PdS=—4nG P d3x, 3)
B B M

where we have used the continuity conditions on @ and its normal derivative across . To account for the term A, @ within the surface
integral over 0B we use the fact that @ is harmonic in R® \ B. It follows that the value of ¢ within this exterior domain is determined uniquely
by its restriction to 0B, and we have, in particular, the well-known expansion

1+1

06.0.0= 2 on®YE6,0). @

Im

valid for r = b, where Y,N denote the fully normalized GSPHSs of degree I, order m, and upper index N (e.g. Dahlen & Tromp 1998). Here the
expansion coefficients of the restriction of the potential to dB are given by the integrals

Oim(b) = B (b, 8,0)Yin (8, ¢)dsS, ®)

where S? is the unit two-sphere. Using this result, we find that
I+1

MQle=— - 0nOYE.9), ®)
Im

and hence eq. (3) can be written

0, Y dx+ (I +1)bein(b) Yin(b) = —4nG Pdx, U]

B M

Im

which is to hold for all test functions Y. This is the desired weak form of the problem. Importantly, the role of the exterior potential has been
reduced to non-local boundary terms involving its spherical harmonic expansion coefficients on dB.

2.3 Transformation of Poisson’s equation

The weak form of Poisson’s equation in eq. (7) provides a suitable starting point for numerical discretization using, for example, a 3-D spectral
element method (e.g. Chaljub & Valette 2004). However, we cannot use methods based upon GSPH expansions to tackle this problem if the
planet is not geometrically spherical because the continuity conditions on @ across the boundaries  cannot be readily enforced. In order to
apply such an approach we must transform the problem into an equivalent one defined on a geometrically spherical domain.

Consider a diffeomorphism ¢ : B — B (i.e. a smooth mapping, with a smooth inverse) with the following properties:

(i) its restriction to the boundary 0B is the identity mapping;
(ii) the inverse image M = £~1(M) is a ball with centre coincident with that of B;
(iii) the inverse image ~ = &£~1( ) of the boundary set is comprised of concentric spheres in M.

For general M such a diffeomorphism will not exist, and so we see the fundamental restriction of our method. Nonetheless, for many
applications a suitable diffeomorphism can be found, and later we discuss how this can be done practically. In fact, the requirement that this
mapping be smooth is more stringent than is strictly necessary, and it is possible for it to be defined in a piecewise manner with continuity
enforced at interfaces.

Using this diffeomorphism, we can define a new referential potential field

() = (9 °)() = 0lE(X], ®)

where - denotes the composition of two functions. Knowledge of { is equivalent to that of @, but  is defined on a geometrically spherical
domain. Our first aim is to show that { satisfies a suitably generalized form of Poisson’s equation. Using & to change variables in eq. (7), we
arrive at

JFET LFT X d+  (I1+1)bgn(b) Xin(b) = —4nG MJ 2 EXdx. ©)

B Im
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where we have defined a new test function x = U = &, along with the deformation gradient F of the diffeomorphism, which has components
[FIi; = % ; (10)
and its Jacobian,

J = detF, (1)
which we assume without loss of generality to be everywhere positive. We have also applied the chain rule to arrive at the identity
(@)&E=FT (12)

along with a corresponding expression involving the gradients of the test functions. At this stage it is convenient to define the right
Cauchy—Green deformation tensor,

C=FTF, 13)
a tensor derived from it,

a=JC1, (14)
and the referential density,

p=1J °&. (19

With these definitions, the transformed weak form for { can be written

a ¢, X &+  (I+DbqnbO)Ximb)=—41G pxdx, (16)

B M

Im

which is to hold for all test functions x. This equation broadly resembles the original weak formulation, but involves the tensor field a
determined from the diffeomorphism &. By construction, these problems are mathematically equivalent: in essence we have just exchanged
simplicity of the equation for simplicity of the domain in which it is posed. From a numerical perspective, however, it is only in the transformed
problem that we can usefully apply methods based on GSPH expansions.

3 NUMERICAL IMPLEMENTATION

3.1 Numerical discretization of the problem

Our approach to solving eq. (16) numerically is based on GSPH expansions for the angular dependence of the referential potential, along
with a spectral-element discretization in the radial co-ordinate. Within B, the truncated GSPH expansion of the referential potential takes the
form

((r.6,9) = Un(r)Yin (8, 9), a7
1=0 m=-I

where the maximum expansion degree L is to be chosen based on the planet’s structure and properties. Each of the radial expansion coefficients

Cim s then expanded in a finite set of radial basis functions

N
Zlm(r) = Zlmnhn(r)- (18)
n=1

The specific basis functions used are Lagrange polynomials defined on a radial spectral element mesh (e.g. Komatitsch & Tromp 1999;
Al-Attar & Tromp 2014). Importantly, the radial mesh is built to honour the discontinuities within the reference planet M, and thus we can
enforce the required continuity of  in a trivial manner. The appropriate continuity conditions on the gradient of the referential potential are
built directly into the weak formulation of the problem, and so need not be considered explicitly.

The test functions for the problem are taken in turn to be x = h,Y_2, as the indices I, m and n range over appropriate values, and in this
manner we arrive at a system of linear equations

Ax = f, (19)

where the vector x contains the expansion coefficients {im,, While the matrix A and force vector f are obtained through discretization of
the weak form in a manner detailed below. Specifically, we represent x by defining for each | and m an N-component vector X the n’th
component of which is {mp,

Ximln = Qimn - (20)
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All the X, are then bundled together into the [N(L + 1)?]-component column-vector

Xoo
X1-1
X10

x= (21)
Xim

XLL

and the components of the force, finn (computed below), are arranged similarly. Importantly, explicit calculation of the components of A,
which can be large, is not required. Instead, we need only ever compute its action on a given vector as part of the iterative solution of the
linear system.

3.2 Hybrid pseudospectral/spectral element calculations

To determine the action of the matrix A and to compute the force vector f, we use a hybrid pseudospectral/spectral element method similar
to that of Crawford (2018) for modelling glacial isostatic adjustment in the presence of laterally varying mantle viscosity. This approach also
closely resembles the method of Leng et al. (2016) and Leng et al. (2019) for modelling global seismic wave propagation, though in their
work a 2-D spectral element method is coupled to a Fourier-series expansion in an azimuthal variable about the source location.

To explain the key ideas, we start with the computation of the force vector, which is part of the preprocessing for the potential calculation.
The components fin,, having been computed once, are stored and used at the first stage of the iterative solution. The (I, m, n)th element of the
force vector is given by the integral

fing = —41G  ph, Y2 d, (22)
M
where we note that the radial basis functions are real valued. Using spherical polar co-ordinates the volume integral can be reduced to

a
pha Yo dx = piph,r?dr, (23)
M 0

where py, is the (I, m)th GSPH coefficient of the referential density and a denotes the radius of the reference planet M; once Pim is known,
the radial integral can be evaluated using the numerical quadrature formula associated with the spectral element discretization. How we find
pim depends on the way in which the planet’s structure is specified. On the one hand, the density might be described referentially, with p and
& given, in which case we obtain py, by applying a fast GSPH transformation at each radial node to calculate the GSPH coefficients for an
appropriate range of indices. In detail, this transformation is done using Gauss-Legendre quadrature in colatitude coupled to a fast Fourier
transformation in longitude (cf. Lognonné & Romanowicz 1990). On the other hand, if the model is specified by the physical density (x)
then we must first determine p(x). To do this, we use eq. (15) to determine the values of p on an appropriate spatial grid and then proceed as
before.

Turning to the action of the matrix A, suppose we wish to determine Ax, with x defined as above to contain the components of the
discretized referential gravitational potential ¢. It will be useful to define an auxiliary vector field

g=a ¢, (24)

where we recall that a is the symmetric tensor field introduced in eq. (14). Working in the canonical basis of Phinney & Burridge (1973) (see

Appendix A) the components of this vector field can be expanded as

q“= " dinYin- (25)
Im

Taking the (I, m, n)th test function, we can apply the rules for contravariant differentiation (e.g. Dahlen & Tromp 1998, Appendix C) to reduce

the left-hand side of eq. (16) to

b
r’h,ap, + %rhn Qi + 0 dr +b(l + 1)hy (D)m (b), (26)

0

where k = (I + 1). Assuming we know the functions q,, the radial integral can be trivially evaluated using numerical quadrature, and
gives the desired element of Ax.

Calculation of the coefficient functions q/}, is done in a number of stages, following the standard pseudospectral philosophy by which
we work in either the spatial or spectral domain based on what is simplest (e.g. Boyd 2001). Starting from the expansion coefficient functions
Cim, We use the rules for contravariant differentiation along with those for Lagrange polynomial interpolation to determine Z,',ﬂ, the expansion
coefficients of  { relative to the canonical basis. Inverse fast GSPH transformations are then performed to find the values of ¢ on a spatial
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Figure 1. The stages in the calculation of ¢ for an aspherical, layered planet. Each panel shows a slice through the plane 6 = /2, and a small, homogeneous
sphere has been placed around the origin in order to ensure that & and p are both regular at the origin. Panel (a) shows the planet before performing any
transformations. In panel (b) the computational domain B has been transformed through the action of &: the boundaries of the planet are spherical and the
density has been transformed accordingly. Panel (d) shows ¢, the solution to eq. (16). Moving left from (d) to (c) the planet and potential are mapped from
reference space back to physical space, yielding the potential @.

mesh. Multiplication by a is performed spatially to obtain g = a  on this grid, and finally the required coefficient functions g, are obtained
through forward fast GSPH transformations. Within this process forward and inverse fast GSPH transformations must—potentially—be
performed at each node of the radial mesh, and this accounts for a substantial part of our method’s computational cost. Importantly, however,
in regions where the diffeomorphism is the identity we have a (x) = 1, so these transformations are not needed and we can make substantial
computational savings.

3.3 Pre-conditioned iterative solution of the linear system

The numerical solution of eq. (19) is accomplished most efficiently using matrix-free iterative methods. From eq. (16) it is clear that A is
an Hermitian matrix, and so we can apply the pre-conditioned conjugate gradient algorithm (e.g. Saad 2003). In order for this algorithm
to converge rapidly a good pre-conditioner B for the linear system must be found. Here a balance must be struck between B being a good
approximation to the inverse operator A~*—meaning the algorithm will converge in fewer iterations—and the cost of determining the action
of B. The preconditioner which we have used in all our numerical examples is

B= AO® @7)

where A®© is the system matrix for the corresponding spherical system, that is the matrix obtained by considering eq. (16) with &(x) = x.
The reasoning behind this choice is similar to that of Al-Attar et al. (2012) in the context of normal mode coupling calculations. One

starts by observing that when the planet is geometrically spherical there is a complete decoupling between the coefficients for different

spherical harmonic degrees and orders, which gives the corresponding matrix A© a block diagonal structure. The matrix A,(O) associated with
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Figure 2. The potential and topography of the body considered in Fig. 1, evaluated on dB. Panel (a) shows the numerical potential anomaly. Long-wavelength
features of the topography—shown in panel (c)—are clearly visible. In panel (d) we have plotted the numerical (blue) and analytical (red) values of the
normalized power-spectra, Py. There is excellent agreement until about | = 100. Thereafter, the two spectra deviate somewhat, but the power at these higher
degrees is so small that the spatial field is not affected noticeably. Indeed, the relative difference between the numerical and analytical fields, normalized by the
maximum absolute value of the analytical field, is only a few parts in 108, as shown in panel (b).

the (I, m)th subsystem is independent of m, and can be readily computed in terms of the radial spectral element discretization (cf. Al-Attar &
Tromp 2014, Appendix D2). Moreover, the matrices A,(O) for each | are Hermitian and narrow banded, meaning that their LU-decomposition
can be computed and stored in an efficient manner using standard LAPACK routines for banded matrices. Once these factorizations have been
performed, the action of A© ! canbe computed rapidly by carrying out (L + 1)? simple backsubstitutions. The action of the block-diagonal
pre-conditioner on the vector f can then be written

2O
AY - fi1
A g
A THf= : . (28)
A9 gy

-1
0
A
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