Supplementary Information: Microstructural Constraints on Magmatic Mushes under Kīlauea Volcano, Hawai'i

Penny E. Wieser*1, Marie Edmonds1, John Maclennan1 and John Wheeler2

1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK,

CB2 3EQ.

² Department of Earth, Ocean and Ecological Sciences, University of Liverpool.

* Corresponding author: pew26@cam.ac.uk

Supplementary Tables

 $\begin{tabular}{ll} \textbf{Supplementary Table 1} - \textbf{Spatial and temporal information for the samples used in this study.} \end{tabular}$

Sample	Eruption Date	Description	Location	GPS co-ordinates
KL0909	May 24th, 1969	Ep. 1 Mauna Ulu	ERZ	19° 21.826' N, 155° 12.877' W
KL0908	Dec 30 th , 1969	Ep. 12 Mauna Ulu	ERZ	19° 20.839' N, 155° 12.518' W
KL0910	Nov 10 th , 1973	Pau'ahi Crater	ERZ	19° 22.313' N, 155° 13.510' W
KL0914	Sept 24-29 th , 1971		Intracaldera	19° 24.580' N, 155° 16.631' W
KL0916	Aug 14 th , 1971		Intracaldera	19° 24.137' N, 155° 16.644' W
KL0917	Late July, 1974		Intracaldera	19° 24.06' N, 155° 16.653' W
KL0919	Late Dec, 1974	Ka'u Desert	SSWRZ	19° 22.649' N, 155° 17.609' W
KL0920	Late Dec, 1974	Ka'u Desert	SSWRZ	19° 22.603' N, 155° 17.713' W
KL0921	~1700 AD	Circumferential flow, Ka'u Desert	SSWRZ	19° 22.989' N, 155° 17.464 'W
KL0922	Sept 1974		Intracaldera	19° 24.201' N, 155° 17.502' W
KL0924	Late July, 1974		Extracaldera	19° 24.142' N, 155° 16.896' W
KL0930	1919-1920	Mauna Iki	NSWRZ	19° 21.230' N, 155° 23.892' W
KL0931	Sept 24-29 th , 1971		NSWRZ	19° 20.625' N, 155° 21.659' W

Supplementary Table 2 – EBSD acquisition parameters.

SEM Setting	<u>s</u>	EBSD Settings	
Aperture	3	Sample-Detector Distance	~14 mm
Voltage	20 kV	Background (frames)	2
Beam Size	5.5	Gain	10-30
Sample Tilt	70°	Hough Resolution	60
Working Distance	~17-14	Band Detection (min/max)	Min 6
_	mm		max 12
Step size (um)	3-15	Reference	Forsterite (Fe 0.2
	μm		MgO 1.8)
			AMSDB-ID:
			0008912
		EBSP resolution	320x240 pixels

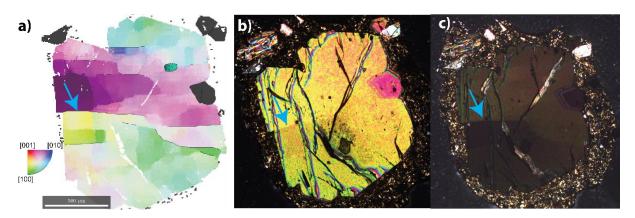
Supplementary Table 3 – Calibration materials, count times, and estimates of analytical precision and accuracy for EPMA analysis of olivine crystals. Precision and accuracy was estimated from repeated measurements of a San Carlos Olivine secondary standard. Some instrument drift occurred in session 2. We only report forsterite contents from this session (forsterite contents measured in repeated analyses of San Carlos olivine were used to create a linear interpolation model to correct instrument drift). The drift was less coherent for Si and Ca, so these elements are not reported. Ca contents for run 1 and 3 were internally corrected to the values measured in the San Carlos olivine standard (factors of 1.3 and 1.05 respectively).

Elemen	Calibratio	Crysta	Peak	Analysi	Conditio	Precisio	Accuracy	
t	n	I	Coun t time	s order	n	n	(%)	
						(%)	(measured	
						(Std dev/ mean)	/ standard)	
Session 1	- 30nA, 15k\	/. Novemb	per, 2017					
Si	Diopside	TAP	10s	1 st	N/A	0.49	99.0	
Mg	St. Johns Olivine	TAP	20s	2 nd	N/A	1.16	97.7	
Fe	Fayalite	LIF	20s	1 st	N/A	1.07	99.3	
Ca	Diopside	LPET	60s	1st	N/A	9.3	130.7	
	Session 1 – February 2018 – Dual condition run Cond1 = 30nA, 15kV; Cond 2 = 100nA, 15kV							
Si	Diopside	TAP	10s	1 st	1	1.12	99.26	
Mg	St. Johns	TAP	20s		1			
	Olivine			2 nd		2.41	100.30	
Fe	Fayalite	LIF	20s	1 st	1	1.14	98.47	
Ca	Diopside	LPET	10s	1 st	2	12.3	118.0	
	<u>–40nA, 15kV</u>		018,					
Si	Diopside	TAP	20s	1 st	N/A	0.67	100.7	
Mg	St. Johns	LTAP	20s	1 st	N/A		99.9	
	Olivine					0.72		
Fe	Fayalite	LIF	20s	1 st	N/A	0.93	100.58	
Ca	Diopside	PET,	30s,	1st	N/A			
		LPET	20s			0.93	105.4	

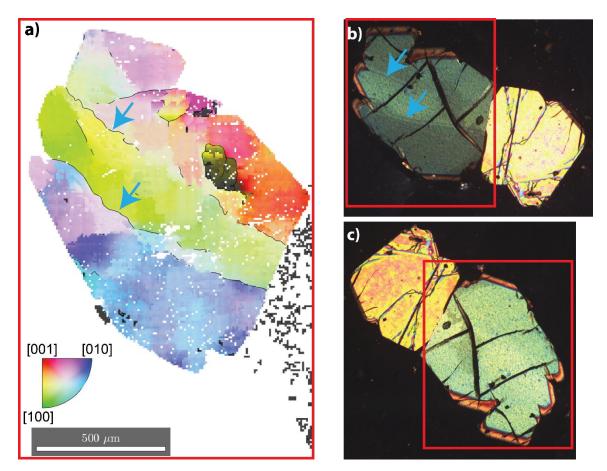
Supplementary Table 4 - Calibration materials and count times for EPMA analyses of matrix glasses.

Element	Calibration Material	Crystal	Peak Count Time	Analysis order
Na	Jadeite	LTAP	10s	1 st
Al	Corundum	LTAP	20s	2 nd
Ca	Diopside	PET	20s	1 st
Р	Apatite	PET	60s	2 nd
K	K feldspar	LPET	10s	1 st
Ti	Rutile	LPET	60s	2 nd
Si	Diopside	TAP	10s	1 st
Mg	St. Johns Olivine	TAP	20s	2 nd

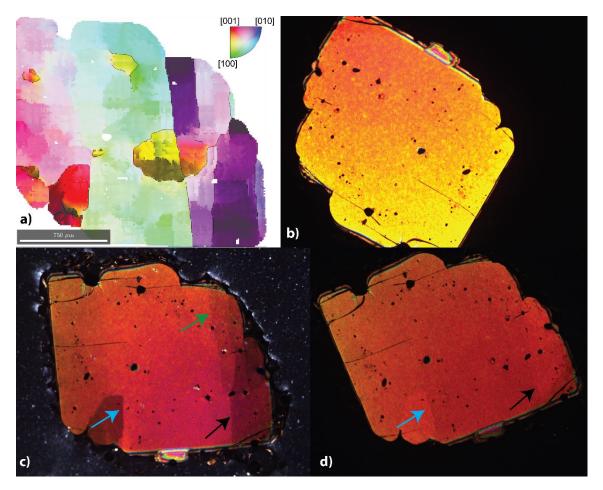
Fe	Fayalite	LIF	20s	1 st
Cr	Cr spinel	LIF	40s	2 nd
Mn	Manganese	LIF	40s	3 rd

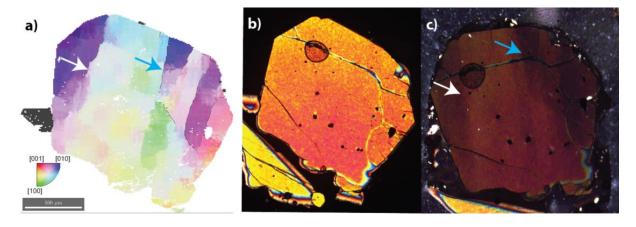

Supplementary Table 5 - Precision and accuracy for EPMA analyses of matrix glasses and melt inclusions. Precision and accuracy was estimated from repeated measurements of VG2 and Basalt_113716-1 secondary standards.

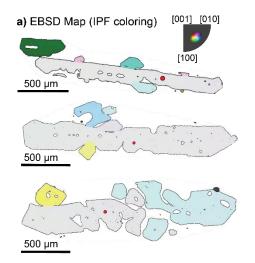
		Mg		Ca			Cr ₂ O		Na ₂		
Element	SiO ₂	0	Al_2O_3	0	TiO ₂	FeO	3	MnO	0	K ₂ O	P ₂ O ₅
% Accuracy			101.		101.	100.	279.		101.	99.	
BCR	98.3	98.3	5	99.2	2	7	5	85.1	9	8	84.9
% Precision							115.			11.	
BCR	1.5	1.6	1.1	1.7	2.3	2.7	8	15.8	6.4	6	20.6
% Accuracy											
Indian Ocean											
Basalt_1137			101.		103.	101.	108.	125.	100.	91.	104.
16-1	99.2	98.5	7	99.0	6	3	8	8	5	0	3
% Precision											
Indian Ocean											
Basalt_1137										17.	
16-1	1.4	2.2	1.7	1.8	1.8	2.8	66.2	15.4	2.2	1	23.4

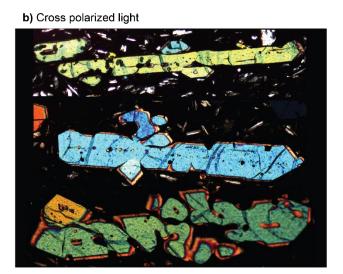

Supplementary Table 6-Details of spectrometers used for WDS EPMA maps.

Element	Spectrometer
Al	LTAP
Ca	PET
Р	LPET
Al	TAP
Fe	LIF

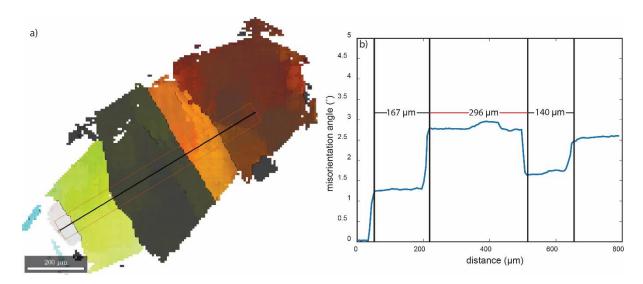

Supplementary Figures


Supplementary Figure 1– Comparison of EBSD-derived IPF map (panel **a**; scaled to 2°) with photos taken using a high-spec optical microscope (panels **b-c**; Zeiss Axioscope A1). Only a small number of the prominent lattice distortions observed in panel **a**) are visible when viewed with an optical microscope (and only within 5° of the extinction position. Additionally, those visible in **c**) when the crystal is close to extinction can only be seen when the brightness is turned all the way up. This shows that unless each grain in a thin section is examined individually (and rotated through 90° while constantly adjusting the brightness and contrast), it is exceptionally easy to miss the presence of intracrystalline distortions. Even when care is taken, only distortions with large misorientations (e.g. purple to yellow colors in **a**) are observed.


Supplementary Figure 2— Comparison of EBSD-derived IPF map (panel **a**; scaled to 2°) with photos taken using a high-spec optical microscope (panels **b-c**; Zeiss Axioscope A1). The prominent lattice distortions observed in a) are almost invisible when viewed with an optical microscope. The two most prominent extinction discontinuities (blue arrows) are only visible when the crystal is within 4° of its extinction position **(b)**. In fact, unless the brightness of the microscope is adjusted (as is it in image b), it is almost impossible to see these faint color differences.



Supplementary Figure 3– Comparison of EBSD-derived IPF map (*panel a;* scaled to 2°) with photos taken using a high-spec optical microscope (*panels b-d;* Zeiss Axioscope A1). The vast majority of low angle boundaries are almost invisible optically (including the prominent transition between green and purple colors in a). A few are just visible within 5° of the extinction position (c), but only when the brightness of the microscope is turned up.



Supplementary Figure 4– Comparison of EBSD-derived IPF map (*panel a;* scaled to 2°) with photos taken using a high-spec optical microscope (*panels b-c;* Zeiss Axioscope A1). Low angle boundaries are visible within 4° of the extinction position (c), but only when the brightness of the microscope is turned up to the max, and the brightness is increased dramatically in the imaging software.

Supplementary Figure 5– Comparison of EBSD-derived IPF map (*panel a;* scaled to 20°) with photos taken using a high-spec optical microscope (*panels b-c;* Zeiss Axioscope A1). Optical photographs of dendritic olivines shown in Fig. 3. The subtle differences in orientation between dendritic branches are difficult to spot (e.g. light blue and white colors in between the left hand and right hand parts of the bottom dendrite).

Supplementary Figure 6– Example linear intercepts for one grain. **a)** The black line on the IPF-colored EBSD map denotes the user selected profile, chosen to be nearly perpendicular to subgrain boundaries. **b)** Misorientations along the profile, averaged laterally over 5 pixels either side of the boundary to remove noise (code adapted from https://gist.github.com/kilir/410bab7e3e2777200c5e509f1906d225.). The black lines mark the point at which the low angle boundary is crossed at the centre of the profile.