Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3

Lee, W. T. and Salje, E. K. H. and Goncalves-Ferreira, L. and Daraktchiev, M. and Bismayer, U. (2006) Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3. Physical Review B, 73 (21). Art. No. 214110. DOI

[img] PDF
Restricted to Registered users only

Download (110kB)


Even in a topologically perfect crystal, a moving twin wall will experience forces due to the discrete nature of the lattice. The potential energy landscape can be described in terms of one of two parameters: the Peierls energy, which is the activation energy for domain wall motion in a perfect crystal; and the Peierls stress, the maximum pinning stress that the potential can exert. We investigate these parameters in a one order parameter discrete Landau-Ginzburg model and a classical potential model of the ferroelastic perovskite CaTiO3. Using the one order parameter model we show that the Peierls energy scales with the barrier height of the Landau double well potential and calculate its dependence on the width of the wall numerically. In CaTiO3 we calculate the Peierls energy and stress indirectly from the one order parameter model and directly from the interatomic force field. Despite the simplicity of the one order parameter model, its predictions of the activation energy are in good agreement with calculated values.

Item Type: Article
Additional Information: 214110
Uncontrolled Keywords: 2006 AREP IA51 2006 P
Subjects: 03 - Mineral Sciences
Divisions: 03 - Mineral Sciences
Journal or Publication Title: Physical Review B
Volume: 73
Page Range: Art. No. 214110
Identification Number:
Depositing User: Sarah Humbert
Date Deposited: 16 Feb 2009 13:02
Last Modified: 23 Jul 2013 10:07

Actions (login required)

View Item View Item

About cookies