Magnetoelastic properties and behaviour of 4C pyrrhotite, Fe7S8, through the Besnus transition

Haines, C. R. S. and Dutton, S E and Volk, M W R and Carpenter, M. A. (2020) Magnetoelastic properties and behaviour of 4C pyrrhotite, Fe7S8, through the Besnus transition. Journal of Physics: Condensed Matter, 32 (40). p. 405401. ISSN 0953-8984, 1361-648X DOI https://doi.org/10.1088/1361-648X/ab8fd3

[img] Text
Haines_2020_J._Phys. _Condens._Matter_32_405401.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB)
Official URL: https://doi.org/10.1088/1361-648X/ab8fd3

Abstract

Pyrrhotite, Fe7S8, is a commonly occurring carrier of magnetic remanence and has a low temperature transition, the Besnus transition, involving a change in spin state. Variations of the thermodynamic, magnetic and elastic properties through this transition at ~33 K in a natural sample of 4C pyrrhotite have been tested against a group theoretical model for coupling between order parameters relating to Fe/vacancy ordering (irrep U 1(1/2,0,1/4)) and magnetic ordering (irreps m${{\Gamma}}_{4}^{+}$ and m${{\Gamma}}_{5}^{+}$). Magnetoelastic coupling is weak but the pre-existing microstructure of ferroelastic and magnetic domains, that develop as a consequence of Fe/vacancy and ferrimagnetic ordering during slow cooling in nature (P63/mmc → C2'/c'), causes subtle changes in the low temperature transition (C2'/c' → P $\overline{1}$). The Besnus transition involves a rotation of magnetic moments out of the a–c plane of the monoclinic structure, but it appears that the transition temperature might vary locally according to whether it is taking place within the pre-existing domain walls or in the domains that they separate. Evidence of metamagnetic transitions suggests that the magnetic field–temperature phase diagram will display some interesting diversity. Low temperature magnetic transitions in minerals of importance to the palaeomagnetism community have been used to identify the presence of magnetite and haematite in rocks and the Besnus transition is diagnostic of the existence of pyrrhotite, Fe7S8.

Item Type: Article
Uncontrolled Keywords: 2020AREP; IA76
Subjects: 03 - Mineral Sciences
Divisions: 03 - Mineral Sciences
07 - Gold Open Access
Journal or Publication Title: Journal of Physics: Condensed Matter
Volume: 32
Page Range: p. 405401
Identification Number: https://doi.org/10.1088/1361-648X/ab8fd3
Depositing User: Sarah Humbert
Date Deposited: 29 Jul 2020 17:49
Last Modified: 29 Jul 2020 17:49
URI: http://eprints.esc.cam.ac.uk/id/eprint/4825

Actions (login required)

View Item View Item

About cookies