The Transition Zone Beneath West Argentina‐Central Chile Using P ‐to‐ S Converted Waves

Bonatto, Luciana and Piromallo, Claudia and Cottaar, Sanne (2020) The Transition Zone Beneath West Argentina‐Central Chile Using P ‐to‐ S Converted Waves. Journal of Geophysical Research: Solid Earth, 125 (8). ISSN 2169-9313 DOI https://doi.org/10.1029/2020JB019446

[img] Text
Bonatto_revised_tracked_changes.pdf - Accepted Version

Download (3MB)
[img] Text
jgrb54348-2020jb019446-sup-0002-text_si-s01.pdf - Supplemental Material

Download (1MB)
Official URL: https://doi.org/10.1029/2020JB019446

Abstract

We investigate the mantle transition zone beneath the Chile‐Argentina flat subduction region by means of P‐to‐S conversions at mantle discontinuities from teleseismic events recorded at 103 seismic stations. From the analysis of receiver functions, we obtain clear converted phases from the 410 and 660 discontinuities, and we identify a robust precursory signal to P660s, of negative amplitude, that we name P590s. We observe little frequency dependence in the amplitude of the P410s converted phase, while the P660s is less visible toward higher frequencies. The 410 is on average deeper than 410 km by 10 ± 1 km in the higher‐frequency bands, and it is relatively sharp, being consistent with a 10% velocity jump over less than 20 km. The observed 660 depth varies with frequency; it is deeper by up to 18 ± 2 km for lower frequencies and close to reference at higher frequencies, being consistent with a 13% broad velocity gradient over 30–40 km, probably caused by a composite of multiple phase transitions. The transition zone thickness is controlled by the frequency‐dependent depth variability of the 660. Our findings of relative depth, width, and velocity jump of the detected discontinuities, combined with tomographic images of the mantle transition zone, cannot be explained by thermal variations alone. Compositional constraints from mineral physics show that a near pyrolitic mantle is consistent with the ratio of the estimated velocity jumps. However, the negative P590s phase in this region could be signal from the velocity reduction due to basalt accumulation at the base of the transition zone.

Item Type: Article
Uncontrolled Keywords: 2020AREP; IA76
Subjects: 02 - Geodynamics, Geophysics and Tectonics
Divisions: 02 - Geodynamics, Geophysics and Tectonics
08 - Green Open Access
Journal or Publication Title: Journal of Geophysical Research: Solid Earth
Volume: 125
Identification Number: https://doi.org/10.1029/2020JB019446
Depositing User: Sarah Humbert
Date Deposited: 09 Oct 2020 18:47
Last Modified: 13 Feb 2021 01:00
URI: http://eprints.esc.cam.ac.uk/id/eprint/4889

Actions (login required)

View Item View Item

About cookies