Quaternary adakite-Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?

Petrone, C. M. and Ferrari, L. (2008) Quaternary adakite-Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contributions to Mineralogy and Petrology, 156 (1). pp. 73-86. DOI 10.1007/s00410-007-0274-9

[img] PDF
Petrone_Contrib_MinPet.pdf
Restricted to Registered users only

Download (2MB)
Official URL: http://dx.doi.org/10.1007/s00410-007-0274-9

Abstract

A spatial and temporal association between adakitic rocks and Nb-enriched basalts (NEB) is recognised for the first time in the western sector of the Trans-Mexican Volcanic Belt in the San Pedro–Cerro Grande Volcanic Complex (SCVC). The SCVC is composed of subalkalic intermediate to felsic rocks, spanning in composition from high-silica andesites to rhyolites, and by the young transitional hawaiite and mugearite lavas of Amado Nervo shield volcano. Intermediate to felsic rocks of the SCVC show many geochemical characteristics of typical adakites, such as high Sr/Y ratios (up to 180) and low Y (<18 ppm) and Yb contents. Mafic Amado Nervo rocks have high TiO2 (1.5–2.3 wt%), Nb (14–27 ppm), Nb/La (0.5–0.9) and high absolute abundances of HFSE similar to those shown by NEB. However, the Sr and Nd isotopic signature of SCVC rocks is different from that shown by typical adakites and NEB. Although the adakites–NEB association has been traditionally considered as a strong evidence of slab-melting, we suggest that other processes can lead to its generation. Here, we show that parental magmas of adakitic rocks of the SCVC derive their adakitic characteristic from high-pressure crystal fractionation processes of garnet, amphibole and pyroxene of a normal arc basalt. On the other hand, Amado Nervo Na-alkaline parental magmas have been generated by sediment melting plus MORB-fluid flux melting of a heterogeneous mantle wedge, consisting of a mixture of depleted and an enriched mantle sources (90DM + 10EM). We cannot exclude a contribution to the subduction component of slab melts, because the component signature is dominated by sediment melt, but we argue that caution is needed in interpreting the adakites–NEB association in a genetic sense.

Item Type: Article
Uncontrolled Keywords: NIL AREP 2008 P
Subjects: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
Divisions: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
Journal or Publication Title: Contributions to Mineralogy and Petrology
Volume: 156
Page Range: pp. 73-86
Identification Number: 10.1007/s00410-007-0274-9
Depositing User: Sarah Humbert
Date Deposited: 16 Feb 2009 13:03
Last Modified: 23 Jul 2013 10:08
URI: http://eprints.esc.cam.ac.uk/id/eprint/590

Actions (login required)

View Item View Item

About cookies