Relationship between the upper mantle high velocity seismic lid and the continental lithosphere

Priestley, K. and Tilmann, F. (2009) Relationship between the upper mantle high velocity seismic lid and the continental lithosphere. Lithos, 109 (1-2). pp. 112-124. DOI 10.1016/j.lithos.2008.10.021

[img] PDF
Restricted to Registered users only

Download (1MB)


The lithosphere-asthenosphere boundary corresponds to the base of the “rigid” plates – the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285–301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.

Item Type: Article
Uncontrolled Keywords: 08AREP IA56 2009
Subjects: 02 - Geodynamics, Geophysics and Tectonics
Divisions: 02 - Geodynamics, Geophysics and Tectonics
Journal or Publication Title: Lithos
Volume: 109
Page Range: pp. 112-124
Identification Number: 10.1016/j.lithos.2008.10.021
Depositing User: Sarah Humbert
Date Deposited: 16 Feb 2009 13:03
Last Modified: 23 Jul 2013 10:08

Actions (login required)

View Item View Item

About cookies