A chemical kinetics code for modelling exoplanetary atmospheres

Hobbs, Richard and Shorttle, Oliver and Madhusudhan, Nikku and Rimmer, Paul B. (2019) A chemical kinetics code for modelling exoplanetary atmospheres. Monthly Notices of the Royal Astronomical Society, 487 (2). pp. 2242-2261. ISSN 0035-8711 DOI https://doi.org/10.1093/mnras/stz1333

[img] Text
stz1333.pdf - Published Version

Download (1MB)
Official URL: https://doi.org/10.1093/mnras/stz1333

Abstract

Chemical compositions of exoplanets can provide key insights into their physical processes and formation and evolutionary histories. Atmospheric spectroscopy provides a direct avenue to probe exoplanetary compositions. However, whether obtained in transit or thermal emission, spectroscopic observations probe limited pressure windows of planetary atmospheres and are directly sensitive to only a limited set of spectroscopically active species. It is therefore critical to have chemical models that can relate retrieved atmospheric compositions to an atmosphere’s bulk physical and chemical state. To this end, we present LEVI a new chemical kinetics code for modelling exoplanetary atmospheres. LEVI calculates the gas phase hydrogen, oxygen, carbon, and nitrogen chemistry in planetary atmospheres. Here, we focus on hot gas giants. Applying LEVI, we investigate how variations in bulk C/O and N/O affects the observable atmospheric chemistry in hot Jupiters. For typical hot Jupiters, we demonstrate the strong sensitivity of molecular detections to the atmospheric C/O. Molecular detections are conversely less sensitive to the atmospheric N/O ratio, although highly supersolar N/O can decrease the C/O required for HCN and NH3 detection. Using a new pressure–temperature (P–T) profile for HD 209458b without a thermal inversion, we evaluate recently reported detection’s of CO, H2O, and HCN in its day-side atmosphere. We find that our models are consistent with the detected species, albeit with a narrow compositional window around C/O ∼ 1. A C/O ≳ 0.9 (1.6 times solar) was required to meet the minimum reported value for HCN, while a C/O ≲ 1 (1.8 times solar) was required to fit the nominal H2O abundance.

Item Type: Article
Uncontrolled Keywords: 2019AREP; IA76
Subjects: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
Divisions: 05 - Petrology - Igneous, Metamorphic and Volcanic Studies
08 - Green Open Access
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Volume: 487
Page Range: pp. 2242-2261
Identification Number: https://doi.org/10.1093/mnras/stz1333
Depositing User: Sarah Humbert
Date Deposited: 10 Sep 2020 15:24
Last Modified: 10 Sep 2020 15:24
URI: http://eprints.esc.cam.ac.uk/id/eprint/4877

Actions (login required)

View Item View Item

About cookies