Assessing the effect of radioactive waste glass dissolution on early-stage radionuclide migration using simplified geological repository Monte Carlo transport models

Lillington, Joseph N.P. and Goût, Thomas L. and Harrison, Mike T. and Iwalewa, Tajudeen M. and Farnan, Ian (2021) Assessing the effect of radioactive waste glass dissolution on early-stage radionuclide migration using simplified geological repository Monte Carlo transport models. MRS Advances. ISSN 2059-8521 DOI https://doi.org/10.1557/s43580-021-00009-0

[img] Text
Lillington2021_Article_AssessingTheEffectOfRadioactiv.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB)
[img] Text
43580_2021_9_MOESM1_ESM.docx - Published Version

Download (19MB)
Official URL: https://doi.org/10.1557/s43580-021-00009-0

Abstract

The vitrification of radioactive waste within glass and subsequent disposal within a geological disposal facility (GDF) requires a comprehensive understanding of the effect of glass dissolution on GDF performance. This paper aims to analyse the effect of both high-level and intermediate-level waste (HLW and ILW) glass dissolution source terms on radionuclide release into the geosphere just above the disposal vault (the ‘crown’). Radionuclide migration was simulated in GoldSim for HLW in either granite or clay host rocks with a bentonite buffer using carbon steel or copper canisters, whereas ILW simulations considered either granite or clay host rocks, in either bentonite buffer or cement backfill, using concrete or cast-iron canisters. Glass dissolution source terms were varied by coupling GoldSim and MATLAB to modify the initial, residual, and resumption dissolution rates of the glass or by applying the analytical GRAAL model to glass dissolution. HLW glass results indicate no preference of granite over clay host rocks for a given canister type but that a copper canister is preferable to steel. ILW results suggest that a granite–bentonite–cast-iron environment yields lowest crown activities with cast-iron preferable to concrete as the canister, bentonite preferable to cement as the buffer/backfill, and granite preferable to clay as the host rock. Varying glass dissolution source terms (initial, residual, and resumption dissolution rates) had an understood effect on radionuclide migration, although changes were arguably insignificant considering peak crown activity for both HLW and ILW.

Item Type: Article
Uncontrolled Keywords: 2021AREP; IA77
Subjects: 03 - Mineral Sciences
Divisions: 03 - Mineral Sciences
07 - Gold Open Access
12 - PhD
Journal or Publication Title: MRS Advances
Identification Number: https://doi.org/10.1557/s43580-021-00009-0
Depositing User: Sarah Humbert
Date Deposited: 07 Feb 2021 04:02
Last Modified: 07 Feb 2021 04:02
URI: http://eprints.esc.cam.ac.uk/id/eprint/6003

Actions (login required)

View Item View Item

About cookies